Advertisement

Applied Biochemistry and Biotechnology

, Volume 172, Issue 8, pp 3721–3735 | Cite as

Extraction and Immobilization of SA-α-2,6-Gal Receptors on Magnetic Nanoparticles to Study Receptor Stability and Interaction with Sambucus nigra Lectin

  • Karla M. Gregorio-Jauregui
  • Susana A. Carrizalez-Alvarez
  • Jorge E. Rivera-Salinas
  • Hened Saade
  • José L. Martinez
  • Raúl G. López
  • Elda P. Segura
  • Anna IlyinaEmail author
Article

Abstract

The interaction between influenza virus hemagglutinins and host cell with terminal sialic acid linked receptors, SA-α-2,6-Gal for human strains is important to obtain insights into this infectious disease. Sambucus nigra lectin has high affinity for SA-α-2,6-Gal receptors. The goals of this work were: to extract the SA-α-2,6-Gal receptors from porcine airways; to perform receptors immobilization and study their storage stability; and to determine some parameters of interaction between the receptor and S. nigra lectin. The receptor isolation was monitored by means of bound sialic acid (BSAc) detection. A major band of protein at 66.7 kDa was clearly visible in SDS-PAGE assay. Eighty-one percent of isolated glycoproteins were immobilized on magnetic nanoparticles. The kinetics of BSAc storage stability at 4 °C was approximated as the first order reaction with kinetic constant and half-life estimated as 0.062 day−1 and 11.2 days, respectively. The dissociation constant (K d) calculated from Scatchard's plot was 2.47 × 10−7 M, and the receptor concentration was equal to 7.92 × 10−5 M. Procedure for N-SA-α-2,6-Gal -receptors extraction based on their affinity to S. nigra lectin with magnetic nanoparticles, and their immobilization in active form, was not described previously, and may have wide application in designing biosensors or virus removal from areas or contaminated samples.

Keywords

Sambucus nigra lectin Magnetic nanoparticles coated with chitosan SA-α-2,6-Gal N-glycans Immobilization Kinetic parameters 

Notes

Acknowledgements

The authors are grateful to Julieta Sánchez (CIQA) for her technical assistance in assay related to nanoparticles characterization. We thank CONACYT for Ph.D. thesis scholarship.

References

  1. 1.
    Eijk, M. V., White, M. R., Batenburg, J. J., Vaandrager, A. B., Golde, L. M. G. V., & Haagsman, H. P. (2004). American Journal of Respiratory Cell and Molecular Biology, 30, 871–879.CrossRefGoogle Scholar
  2. 2.
    Ibricevic, A., Pekosz, A., Walter, M. J., Newby, C., Battaile, J. T., Brown, E. G., Holtzman, M. J., & Brody, S. L. (2006). Journal of Virology, 80, 7469–7480.CrossRefGoogle Scholar
  3. 3.
    Nelli, R. K., Kuchipudi, S. V., White, G. A., Baquero-Perez, B., Dunham, S. P., & Chang, K. C. (2010). BMC Veterinary Research, 6, 2–9.CrossRefGoogle Scholar
  4. 4.
    Yassine, H. M., Lee, C. W., Gourapura, R., & Saif, Y. M. (2010). Animal Health Research Reviews, 11, 53–72.CrossRefGoogle Scholar
  5. 5.
    Sriwilaijaroen, N., Kondo, S., Yagi, H., Takemae, N., Saito, T., Hiramatsu, H., Kato, K., & Suzuki, Y. (2011). pLoS ONE, 6, 1–8.CrossRefGoogle Scholar
  6. 6.
    Ito, T., Couceiro, J. N., Kelm, S., Baum, L. G., Krauss, S., Castrucci, M. R., Donatelli, I., Kida, H., Paulson, J. C., Webster, R. G., & Kawaoka, Y. (1998). Journal of Virology, 72, 7367–7373.Google Scholar
  7. 7.
    Poucke, S. G. M., Nicholls, J. M., Nauwynck, H. J., & Reeth, K. V. (2010). Virology Journal, 7, 1–14.CrossRefGoogle Scholar
  8. 8.
    Thongratsakul, S., Susuki, Y., Hiramatsu, H., Sakpuaram, T., Sirinarumitr, T., Poolkhet, C., Moonjit, P., Yodsheewan, R., & Songserm, T. (2010). Asian Pacific Journal of Allergy and Immunology, 28, 294–301.Google Scholar
  9. 9.
    Kirkeby, S., Martel, C. J. M., & Aasted, B. (2009). Virus Research, 144, 225–232.CrossRefGoogle Scholar
  10. 10.
    da Cardoso Silva, C. D., Cavalcanti Coriolano, M., da Silva Lino, M. A., de Lagos Melo, C. M., de Souza Bezerra, R., de Matoso Maciel Carvalho, E. V., Guerra dos Santos, A. J., Alves Pereira, V. R., & Breitenbach Barroso Coelho, L. C. (2012). Applied Biochemistry and Biotechnology, 166, 424–435.CrossRefGoogle Scholar
  11. 11.
    Sureshkumar, T., & Priya, S. (2012). Applied Biochemistry and Biotechnology, 168, 2257–2267.CrossRefGoogle Scholar
  12. 12.
    Sucupira Maciel, M. I., de Mendonça Cavalcanti, M. S., Napoleão, T. H., Guedes Paiva, P. M., de Jansem Almeida Catanho, M. T., & Breitenbach Barroso Coelho, L. C. (2012). Applied Biochemistry and Biotechnology, 168, 580–591.CrossRefGoogle Scholar
  13. 13.
    Wang, W. C., & Cummings, R. D. (1988). Journal of Biological Chemistry, 263, 4576–4585.Google Scholar
  14. 14.
    Yamamoto, K., Konami, Y., & Irimura, T. (1997). Journal of Biochemistry, 121, 756–761.CrossRefGoogle Scholar
  15. 15.
    Potts, S. J., Slaughter, D. C., & Thompson, J. F. (2000). Journal of Food Science, 65, 346–350.CrossRefGoogle Scholar
  16. 16.
    Heeboll-Nielsen, A., Dalkiӕr, M., Hubbuch, J. J., & Thomas, O. R. T. (2004). Biotechnology and Bioengineering, 87, 311–323.CrossRefGoogle Scholar
  17. 17.
    Komath, S. S., Kavitha, M., & Swamy, M. J. (2006). Organic and Biomolecular Chemistry, 4, 973–988.CrossRefGoogle Scholar
  18. 18.
    Sharma, A., Ng, T. B., Wong, J. H., & Lin, P. (2009). Journal of Biomedicine Biotechnology, 2009, 1–9.CrossRefGoogle Scholar
  19. 19.
    Maveyraud, L., Niwa, H., Guillet, V., Svergun, D. I., Konarev, P. V., Palmer, R. A., Peumans, W. J., Rougé, P., Van-Damme, E. J., Reynolds, C. D., & Mourey, L. (2009). Proteins, 75, 89–103.CrossRefGoogle Scholar
  20. 20.
    Broekaert, W. F., Nsimba-Lubaki, M., Peeters, B., & Peumans, W. J. (1984). Biochemical Journal, 221, 163–169.CrossRefGoogle Scholar
  21. 21.
    Enpuku, K., Inoue, K., & Soejima, K. (2005). Japanese Journal of Applied Physics, 44, 149–155.CrossRefGoogle Scholar
  22. 22.
    Kubik, T., Bogunia-Kubik, K., & Sugisaka, M. (2005). Current Pharmaceutical Biotechnology, 6, 17–33.Google Scholar
  23. 23.
    Osaka, T., Matsunaga, T., Nakanishi, T., Arakaki, A., Niwa, D., & Iida, H. (2006). Analytical and Bioanalytical Chemistry, 384, 593–600.CrossRefGoogle Scholar
  24. 24.
    Naka, K., Narita, A., Tanaka, H., Chujo, Y., Morita, M., Inubushi, T., Nishimura, I., Hiruta, J., Shibayama, H., Koga, M., Ishibashi, S., Seki, J., Kizaka-Kondoh, S., & Hiraoka, M. (2008). Polymers for Advanced Technologies, 19, 1421–1429.CrossRefGoogle Scholar
  25. 25.
    Saiyed, Z. M., Ramchand, C. M., & Telang, S. D. (2008). Journal of Physics: Condensed Matter, 20, 1–5.Google Scholar
  26. 26.
    Ge, Y., Zhang, Y., He, S., Nie, F., Teng, G., & Gu, N. (2009). Nanoscale Research Letters, 4, 287–295.CrossRefGoogle Scholar
  27. 27.
    Pankhurst, Q. A., Thanh, N. K. T., Jones, S. K., & Dobson, J. (2009). Journal of Physics D: Applied Physics, 42, 167–181.CrossRefGoogle Scholar
  28. 28.
    Amagliani, G., Omiccioli, E., Del-Campo, A., Bruce, I. J., Brandi, G., & Magnani, M. (2006). Journal of Applied Microbiology, 100, 375–383.CrossRefGoogle Scholar
  29. 29.
    Bai, S., Guo, Z., Liu, W., & Sun, Y. (2006). Food Chemistry, 96, 1–7.CrossRefGoogle Scholar
  30. 30.
    Jaffrezic-Renault, N., Martelet, C., Chevolot, Y., & Cloarec, J. P. (2007). Sensors, 7, 589–614.CrossRefGoogle Scholar
  31. 31.
    Kekkonen, V., Lafreniere, N., Ebara, M., & Saito, A. (2009). Journal of Magnetism and Magnetic Materials, 321, 1393–1396.CrossRefGoogle Scholar
  32. 32.
    Pan, C., Hu, B., Li, W., Sun, Y., Ye, H., & Zeng, X. (2009). Journal of Molecular Catalysis B: Enzymatic, 61, 208–215.CrossRefGoogle Scholar
  33. 33.
    Kuo, C., Liu, Y., Liu, C., Chang, C., Chen, J., Chang, C., & Shieh, C. (2012). Carbohydrate Polymers, 87, 2538–2545.CrossRefGoogle Scholar
  34. 34.
    Wan, S., Huang, J., Yan, H., & Liu, K. (2006). Journal of Materials Chemistry, 16, 298–303.CrossRefGoogle Scholar
  35. 35.
    Yang, S. Y., Jian, Z. F., Horng, H. E., Hong, C. Y., Yang, H. C., Wu, C. C., & Lee, Y. H. (2008). Journal of Magnetism and Magnetic Materials, 320, 2688–2691.CrossRefGoogle Scholar
  36. 36.
    Zhuo, Y., Yuan, P., Yuan, R., Chai, Y., & Hong, C. (2009). Biomaterials, 30, 2284–2290.CrossRefGoogle Scholar
  37. 37.
    Gregorio-Jauregui, K. M., Pineda, M. G., Rivera-Salinas, J. E., Hurtado, G., Saade, H., Martínez, J. L., Ilyina, A., & López, R. G. (2012). Journal of Nanomaterials, 2012, 1–8.CrossRefGoogle Scholar
  38. 38.
    Dung, D. T. K., Hai, T. H., Phuc, L. H., Long, B. D., Vihn, L. K., & Truc, P. N. (2009). Journal of Physics: Conference, 187, 1–5.Google Scholar
  39. 39.
    Osuna, Y., Gregorio-Jáuregui, K. M., Gaona-Lozano, J. G., Garza-Garcia, I. M., Ilyina, A., Barriga-Castro, E. D., Saade, H., & López, R. G. (2012). Journal of Nanomaterials, 2012, 1–7.CrossRefGoogle Scholar
  40. 40.
    Segura-Ceniceros, E. P., Dabek-Klapko, R., & Ilyina, A. (2006). Vestnik Moskovskogo Universiteta, Khimiya, 47, 143–148.Google Scholar
  41. 41.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  42. 42.
    Varki, A., & Diaz, S. (1984). Analytical Biochemistry, 137, 236–247.CrossRefGoogle Scholar
  43. 43.
    Hames, B. D. (1998). Gel electrophoresis of protein. A practical approach (3rd ed., pp. 13–33). New York: Oxford University Press.Google Scholar
  44. 44.
    Jourdian, G. W., Lawrence, D., & Roseman, S. (1971). Journal of Biological Chemistry, 246, 430–435.Google Scholar
  45. 45.
    Varfolomeev, S. D., & Gurevich, K. G. (1999). Biokinetika Prakticheskii Kurs (Biokinetics practical course). Moscow: Fair-press.Google Scholar
  46. 46.
    Ward, W. W., & Swiatek, G. (2009). Current Analytical Chemistry, 5, 1–21.CrossRefGoogle Scholar
  47. 47.
    Lu, S. Y., Qian, J. Q., Wu, Z. G., Ye, W. D., Wu, G. F., Pan, Y. B., & Zhang, K. Y. (2009). Journal of Biochemical Technology, 1, 79–84.Google Scholar
  48. 48.
    Tischer, W., Wedekind, F., & Wedekind, F. (1999). Topics in current chemistry, Immobilized enzymes: methods and applications (pp. 96–123). Berlin: Springer.Google Scholar
  49. 49.
    Metin, A. U. (2013). Macromolecular Research, 21, 1145–1152.CrossRefGoogle Scholar
  50. 50.
    Cao, L. (2006). Carrier-bound immobilized enzymes: principles, application and design (pp. 1–293). Germany: Wiley-VCH.CrossRefGoogle Scholar
  51. 51.
    Mohapatra, S., Pal, D., Ghosh, S. K., & Pramanik, P. (2007). Journal of Nanoscience and Nanotechnology, 7, 3193–3199.CrossRefGoogle Scholar
  52. 52.
    Nicholls, J. M., Bourne, A. J., Chen, H., Guan, Y., & Peiris, M. J. S. (2007). Respiratory Research, 8, 73–77.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Karla M. Gregorio-Jauregui
    • 1
  • Susana A. Carrizalez-Alvarez
    • 1
  • Jorge E. Rivera-Salinas
    • 1
  • Hened Saade
    • 2
  • José L. Martinez
    • 1
  • Raúl G. López
    • 2
  • Elda P. Segura
    • 1
  • Anna Ilyina
    • 1
    Email author
  1. 1.Grupo de Nanobiociencia de la Facultad de Ciencias QuímicasUniversidad Autónoma de CoahuilaSaltilloMexico
  2. 2.Departamento de Procesos de PolimerizaciónCentro de Investigación en Química AplicadaSaltilloMexico

Personalised recommendations