Skip to main content

Advertisement

Log in

Extraction and Immobilization of SA-α-2,6-Gal Receptors on Magnetic Nanoparticles to Study Receptor Stability and Interaction with Sambucus nigra Lectin

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The interaction between influenza virus hemagglutinins and host cell with terminal sialic acid linked receptors, SA-α-2,6-Gal for human strains is important to obtain insights into this infectious disease. Sambucus nigra lectin has high affinity for SA-α-2,6-Gal receptors. The goals of this work were: to extract the SA-α-2,6-Gal receptors from porcine airways; to perform receptors immobilization and study their storage stability; and to determine some parameters of interaction between the receptor and S. nigra lectin. The receptor isolation was monitored by means of bound sialic acid (BSAc) detection. A major band of protein at 66.7 kDa was clearly visible in SDS-PAGE assay. Eighty-one percent of isolated glycoproteins were immobilized on magnetic nanoparticles. The kinetics of BSAc storage stability at 4 °C was approximated as the first order reaction with kinetic constant and half-life estimated as 0.062 day−1 and 11.2 days, respectively. The dissociation constant (K d) calculated from Scatchard's plot was 2.47 × 10−7 M, and the receptor concentration was equal to 7.92 × 10−5 M. Procedure for N-SA-α-2,6-Gal -receptors extraction based on their affinity to S. nigra lectin with magnetic nanoparticles, and their immobilization in active form, was not described previously, and may have wide application in designing biosensors or virus removal from areas or contaminated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eijk, M. V., White, M. R., Batenburg, J. J., Vaandrager, A. B., Golde, L. M. G. V., & Haagsman, H. P. (2004). American Journal of Respiratory Cell and Molecular Biology, 30, 871–879.

    Article  Google Scholar 

  2. Ibricevic, A., Pekosz, A., Walter, M. J., Newby, C., Battaile, J. T., Brown, E. G., Holtzman, M. J., & Brody, S. L. (2006). Journal of Virology, 80, 7469–7480.

    Article  CAS  Google Scholar 

  3. Nelli, R. K., Kuchipudi, S. V., White, G. A., Baquero-Perez, B., Dunham, S. P., & Chang, K. C. (2010). BMC Veterinary Research, 6, 2–9.

    Article  Google Scholar 

  4. Yassine, H. M., Lee, C. W., Gourapura, R., & Saif, Y. M. (2010). Animal Health Research Reviews, 11, 53–72.

    Article  Google Scholar 

  5. Sriwilaijaroen, N., Kondo, S., Yagi, H., Takemae, N., Saito, T., Hiramatsu, H., Kato, K., & Suzuki, Y. (2011). pLoS ONE, 6, 1–8.

    Article  Google Scholar 

  6. Ito, T., Couceiro, J. N., Kelm, S., Baum, L. G., Krauss, S., Castrucci, M. R., Donatelli, I., Kida, H., Paulson, J. C., Webster, R. G., & Kawaoka, Y. (1998). Journal of Virology, 72, 7367–7373.

    CAS  Google Scholar 

  7. Poucke, S. G. M., Nicholls, J. M., Nauwynck, H. J., & Reeth, K. V. (2010). Virology Journal, 7, 1–14.

    Article  Google Scholar 

  8. Thongratsakul, S., Susuki, Y., Hiramatsu, H., Sakpuaram, T., Sirinarumitr, T., Poolkhet, C., Moonjit, P., Yodsheewan, R., & Songserm, T. (2010). Asian Pacific Journal of Allergy and Immunology, 28, 294–301.

    Google Scholar 

  9. Kirkeby, S., Martel, C. J. M., & Aasted, B. (2009). Virus Research, 144, 225–232.

    Article  CAS  Google Scholar 

  10. da Cardoso Silva, C. D., Cavalcanti Coriolano, M., da Silva Lino, M. A., de Lagos Melo, C. M., de Souza Bezerra, R., de Matoso Maciel Carvalho, E. V., Guerra dos Santos, A. J., Alves Pereira, V. R., & Breitenbach Barroso Coelho, L. C. (2012). Applied Biochemistry and Biotechnology, 166, 424–435.

    Article  Google Scholar 

  11. Sureshkumar, T., & Priya, S. (2012). Applied Biochemistry and Biotechnology, 168, 2257–2267.

    Article  CAS  Google Scholar 

  12. Sucupira Maciel, M. I., de Mendonça Cavalcanti, M. S., Napoleão, T. H., Guedes Paiva, P. M., de Jansem Almeida Catanho, M. T., & Breitenbach Barroso Coelho, L. C. (2012). Applied Biochemistry and Biotechnology, 168, 580–591.

    Article  Google Scholar 

  13. Wang, W. C., & Cummings, R. D. (1988). Journal of Biological Chemistry, 263, 4576–4585.

    CAS  Google Scholar 

  14. Yamamoto, K., Konami, Y., & Irimura, T. (1997). Journal of Biochemistry, 121, 756–761.

    Article  CAS  Google Scholar 

  15. Potts, S. J., Slaughter, D. C., & Thompson, J. F. (2000). Journal of Food Science, 65, 346–350.

    Article  CAS  Google Scholar 

  16. Heeboll-Nielsen, A., Dalkiӕr, M., Hubbuch, J. J., & Thomas, O. R. T. (2004). Biotechnology and Bioengineering, 87, 311–323.

    Article  CAS  Google Scholar 

  17. Komath, S. S., Kavitha, M., & Swamy, M. J. (2006). Organic and Biomolecular Chemistry, 4, 973–988.

    Article  CAS  Google Scholar 

  18. Sharma, A., Ng, T. B., Wong, J. H., & Lin, P. (2009). Journal of Biomedicine Biotechnology, 2009, 1–9.

    Article  Google Scholar 

  19. Maveyraud, L., Niwa, H., Guillet, V., Svergun, D. I., Konarev, P. V., Palmer, R. A., Peumans, W. J., Rougé, P., Van-Damme, E. J., Reynolds, C. D., & Mourey, L. (2009). Proteins, 75, 89–103.

    Article  CAS  Google Scholar 

  20. Broekaert, W. F., Nsimba-Lubaki, M., Peeters, B., & Peumans, W. J. (1984). Biochemical Journal, 221, 163–169.

    Article  CAS  Google Scholar 

  21. Enpuku, K., Inoue, K., & Soejima, K. (2005). Japanese Journal of Applied Physics, 44, 149–155.

    Article  CAS  Google Scholar 

  22. Kubik, T., Bogunia-Kubik, K., & Sugisaka, M. (2005). Current Pharmaceutical Biotechnology, 6, 17–33.

    CAS  Google Scholar 

  23. Osaka, T., Matsunaga, T., Nakanishi, T., Arakaki, A., Niwa, D., & Iida, H. (2006). Analytical and Bioanalytical Chemistry, 384, 593–600.

    Article  CAS  Google Scholar 

  24. Naka, K., Narita, A., Tanaka, H., Chujo, Y., Morita, M., Inubushi, T., Nishimura, I., Hiruta, J., Shibayama, H., Koga, M., Ishibashi, S., Seki, J., Kizaka-Kondoh, S., & Hiraoka, M. (2008). Polymers for Advanced Technologies, 19, 1421–1429.

    Article  CAS  Google Scholar 

  25. Saiyed, Z. M., Ramchand, C. M., & Telang, S. D. (2008). Journal of Physics: Condensed Matter, 20, 1–5.

    Google Scholar 

  26. Ge, Y., Zhang, Y., He, S., Nie, F., Teng, G., & Gu, N. (2009). Nanoscale Research Letters, 4, 287–295.

    Article  CAS  Google Scholar 

  27. Pankhurst, Q. A., Thanh, N. K. T., Jones, S. K., & Dobson, J. (2009). Journal of Physics D: Applied Physics, 42, 167–181.

    Article  Google Scholar 

  28. Amagliani, G., Omiccioli, E., Del-Campo, A., Bruce, I. J., Brandi, G., & Magnani, M. (2006). Journal of Applied Microbiology, 100, 375–383.

    Article  CAS  Google Scholar 

  29. Bai, S., Guo, Z., Liu, W., & Sun, Y. (2006). Food Chemistry, 96, 1–7.

    Article  CAS  Google Scholar 

  30. Jaffrezic-Renault, N., Martelet, C., Chevolot, Y., & Cloarec, J. P. (2007). Sensors, 7, 589–614.

    Article  CAS  Google Scholar 

  31. Kekkonen, V., Lafreniere, N., Ebara, M., & Saito, A. (2009). Journal of Magnetism and Magnetic Materials, 321, 1393–1396.

    Article  CAS  Google Scholar 

  32. Pan, C., Hu, B., Li, W., Sun, Y., Ye, H., & Zeng, X. (2009). Journal of Molecular Catalysis B: Enzymatic, 61, 208–215.

    Article  CAS  Google Scholar 

  33. Kuo, C., Liu, Y., Liu, C., Chang, C., Chen, J., Chang, C., & Shieh, C. (2012). Carbohydrate Polymers, 87, 2538–2545.

    Article  CAS  Google Scholar 

  34. Wan, S., Huang, J., Yan, H., & Liu, K. (2006). Journal of Materials Chemistry, 16, 298–303.

    Article  CAS  Google Scholar 

  35. Yang, S. Y., Jian, Z. F., Horng, H. E., Hong, C. Y., Yang, H. C., Wu, C. C., & Lee, Y. H. (2008). Journal of Magnetism and Magnetic Materials, 320, 2688–2691.

    Article  CAS  Google Scholar 

  36. Zhuo, Y., Yuan, P., Yuan, R., Chai, Y., & Hong, C. (2009). Biomaterials, 30, 2284–2290.

    Article  CAS  Google Scholar 

  37. Gregorio-Jauregui, K. M., Pineda, M. G., Rivera-Salinas, J. E., Hurtado, G., Saade, H., Martínez, J. L., Ilyina, A., & López, R. G. (2012). Journal of Nanomaterials, 2012, 1–8.

    Article  Google Scholar 

  38. Dung, D. T. K., Hai, T. H., Phuc, L. H., Long, B. D., Vihn, L. K., & Truc, P. N. (2009). Journal of Physics: Conference, 187, 1–5.

    Google Scholar 

  39. Osuna, Y., Gregorio-Jáuregui, K. M., Gaona-Lozano, J. G., Garza-Garcia, I. M., Ilyina, A., Barriga-Castro, E. D., Saade, H., & López, R. G. (2012). Journal of Nanomaterials, 2012, 1–7.

    Article  Google Scholar 

  40. Segura-Ceniceros, E. P., Dabek-Klapko, R., & Ilyina, A. (2006). Vestnik Moskovskogo Universiteta, Khimiya, 47, 143–148.

    CAS  Google Scholar 

  41. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  42. Varki, A., & Diaz, S. (1984). Analytical Biochemistry, 137, 236–247.

    Article  CAS  Google Scholar 

  43. Hames, B. D. (1998). Gel electrophoresis of protein. A practical approach (3rd ed., pp. 13–33). New York: Oxford University Press.

    Google Scholar 

  44. Jourdian, G. W., Lawrence, D., & Roseman, S. (1971). Journal of Biological Chemistry, 246, 430–435.

    CAS  Google Scholar 

  45. Varfolomeev, S. D., & Gurevich, K. G. (1999). Biokinetika Prakticheskii Kurs (Biokinetics practical course). Moscow: Fair-press.

    Google Scholar 

  46. Ward, W. W., & Swiatek, G. (2009). Current Analytical Chemistry, 5, 1–21.

    Article  Google Scholar 

  47. Lu, S. Y., Qian, J. Q., Wu, Z. G., Ye, W. D., Wu, G. F., Pan, Y. B., & Zhang, K. Y. (2009). Journal of Biochemical Technology, 1, 79–84.

    CAS  Google Scholar 

  48. Tischer, W., Wedekind, F., & Wedekind, F. (1999). Topics in current chemistry, Immobilized enzymes: methods and applications (pp. 96–123). Berlin: Springer.

    Google Scholar 

  49. Metin, A. U. (2013). Macromolecular Research, 21, 1145–1152.

    Article  CAS  Google Scholar 

  50. Cao, L. (2006). Carrier-bound immobilized enzymes: principles, application and design (pp. 1–293). Germany: Wiley-VCH.

    Book  Google Scholar 

  51. Mohapatra, S., Pal, D., Ghosh, S. K., & Pramanik, P. (2007). Journal of Nanoscience and Nanotechnology, 7, 3193–3199.

    Article  CAS  Google Scholar 

  52. Nicholls, J. M., Bourne, A. J., Chen, H., Guan, Y., & Peiris, M. J. S. (2007). Respiratory Research, 8, 73–77.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Julieta Sánchez (CIQA) for her technical assistance in assay related to nanoparticles characterization. We thank CONACYT for Ph.D. thesis scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Ilyina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregorio-Jauregui, K.M., Carrizalez-Alvarez, S.A., Rivera-Salinas, J.E. et al. Extraction and Immobilization of SA-α-2,6-Gal Receptors on Magnetic Nanoparticles to Study Receptor Stability and Interaction with Sambucus nigra Lectin. Appl Biochem Biotechnol 172, 3721–3735 (2014). https://doi.org/10.1007/s12010-014-0801-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0801-x

Keywords

Navigation