Applied Biochemistry and Biotechnology

, Volume 172, Issue 8, pp 3736–3747 | Cite as

Biological Real-Time Reaction Calorimeter Studies for the Production of Penicillin G Acylase from Bacillus badius

  • Karthikeyan Rajendran
  • Sudharshan Sekar
  • Surianarayanan MahadevanEmail author
  • Bhuvanesh Kumar Shanmugam
  • Rajendhran Jeyaprakash
  • Gunasekaran Paramasamy
  • Asit Baran Mandal


Penicillin G acylase (PGA) is a commercially important enzyme that cleaves penicillin G to 6-amino penicillanic acid (6-APA) and phenyl acetic acid (PAA). The strain Bacillus badius has been identified as potential producer of PGA. A detailed calorimetric investigation on PGA production was carried out to enable generation of thermokinetic data possible for commercial application. Reaction calorimetric studies coupled with respirometric studies suggested that enzyme activity of the species B. badius was calorimetrically traceable. Three phases of growth were distinctly noticeable in the metabolic heat-time curve. Increase in enzymatic activity with restricted growth confirmed intracellular nature of the production process. The estimated heat yields due to biomass growth, 10.026 kJ/g, substrate consumption 22.761 kJ/g, and oxygen uptake 383 ± 10 kJ/mol helped to understand the energetic of the organism under study. Low oxycalorific coefficient confirmed the existence of fermentation-coupled metabolism of B. badius.


Penicillin G acylase (PGA) 6-Amino penicillanic acid (6-APA) Bacillus badius (B. badiusRespirometry Oxycalorific coefficient 




Heat transfer area (m2)


Heat generated (kJ)

Qmet (t)

Cumulative metabolic heat (kJ/L)


Oxygen uptake rate (mg/L min)


Heat evolution rate (W)


Heat flow of the acid or base addition (W)


Heat accumulation in the bulk (W)


Baseline heat (W)

\( {q}_{{\mathrm{CO}}_2} \)

Heat flow of the CO2 vaporization (W)


Heat flow to the environment through the non-jacketed part of the reactor (W)


Heat flow of the feed (W)


Heat flow induced by aeration (W)


Heat flow through the reactor wall to the jacket oil (W)


Heat flow due to the stirring power (W)


Heat generated by the reaction (W)


Temperature of jacket oil (°C)


Temperature of reactor contents (°C)


Global heat transfer coefficient (W/m2K)


Volume of air per volume of medium per minute (L/L min)


Heat yield coefficient with respect to biomass (kJ/g)


Biomass yield coefficient with respect to substrate (g/g)


Heat generated due to oxygen consumed (kJ/mol)


Heat yield due to substrate depletion (kJ/g)


Biomass yield due to oxygen consumption (g/g mol)










One of the authors (RK) wishes to acknowledge the Principal of Mepco Schlenk Engineering College for kind permission to publish the paper. The authors wish to express their gratitude to Prof. NR Rajagopal for encouragement.


  1. 1.
    Elander, R.-P. (2003). Applied Microbiology and Biotechnology, 61, 385–392.CrossRefGoogle Scholar
  2. 2.
    Cole, M. (1969). The Biochemical Journal, 115, 733–739.CrossRefGoogle Scholar
  3. 3.
    Oh, S. J., Kim, Y. C., Park, Y. W., Min, S. Y., Kim, I. S., & Kang, H. S. (1987). Gene, 56, 87–97.CrossRefGoogle Scholar
  4. 4.
    Barbero, J. L., Buesa, M. J., Gonzalez de Buitrago, G., Mendez, E., Perez Aranda, A., & Garcia, L. J. (1986). Gene, 49, 69–80.CrossRefGoogle Scholar
  5. 5.
    Konstantinovic, M., Marjanovic, N., Ljubijankic, G., & Glisin, V. (1994). Gene, 143, 79–83.CrossRefGoogle Scholar
  6. 6.
    Ljubijankic, G. M., Konstantinovic, & Glisin, V. (1992). DNA Sequence, 3, 195–200.Google Scholar
  7. 7.
    Martin, L., Prieto, M. A., Cortes, E., & Garcıa, J. L. (1995). FEMS Microbiology Letters, 125, 287–292.CrossRefGoogle Scholar
  8. 8.
    Verhaert, R. M. D., Riemens, A. M., Laan, J., Duin, J., & Quax, W. J. (1997). Applied and Environmental Microbiology, 63, 3412–3418.Google Scholar
  9. 9.
    Corider, J. L., Butsch, B. M., Birou, B., & Von Stockar, U. (1987). Applied Microbiology and Biotechnology, 25, 305–312.CrossRefGoogle Scholar
  10. 10.
    Senthilkumar, S., Surianarayanan, M., & Sudharshan, S. (2008). Biochemical Engineering Journal, 39, 149–156.CrossRefGoogle Scholar
  11. 11.
    Surianarayanan, M., & Senthilkumar, S. (2009). Journal of Chemical Technology and Biotechnology, 84, 1234–1239.CrossRefGoogle Scholar
  12. 12.
    Von Stockar, U., & Marison, I. W. (1989). Adv Biochem Eng, 40, 93–136.Google Scholar
  13. 13.
    Von Stockar, U., Marison, I. W., & Birou, B. (1987). Bioreactors and biotransformations. London: Elesevier.Google Scholar
  14. 14.
    Birou, B., Marison, I. W., & Von Stockar, U. (1987). Biotechnology and Bioengineering, 30(5), 50–660.CrossRefGoogle Scholar
  15. 15.
    Marison, I.-W., & Von Stockar, U. (2012). Enz Microbial Technol, 9(1), 33–43.CrossRefGoogle Scholar
  16. 16.
    Balaji, D., Surianarayanan, M., & Mandal, A. B. (2012). Applied Microbiology and Biotechnology, 93(5), 1927–1936.CrossRefGoogle Scholar
  17. 17.
    Schneiders, M., Grosshor, U., & Busch, C. (1995). Applied Microbiology and Biotechnology, 43, 431–439.CrossRefGoogle Scholar
  18. 18.
    Senthilkumar, S., Surianarayanan, M., & Susheela, R. (2008). Bioscience, Biotechnology, and Biochemistry, 72(4), 936–942.CrossRefGoogle Scholar
  19. 19.
    Gustaffson, L. (1991). Thermochimica Acta, 193, 145–171.CrossRefGoogle Scholar
  20. 20.
    Senthilkumar, S., Surianarayanan, M., & Swaminathan, G. (2008). Appl Microbiol Biot, 78, 249–255.CrossRefGoogle Scholar
  21. 21.
    Jungo, C., Schenk, J., Pasquier, M., Marison, I. W., & Von Stockar, U. (2007). Journal of Biotechnology, 131, 57–66.CrossRefGoogle Scholar
  22. 22.
    Jungo, C., Marison, I. W., & Von Stockar, U. (2007). Journal of Biotechnology, 130, 236–246.CrossRefGoogle Scholar
  23. 23.
    Jungo, C., Marison, I. W., & Von Stockar, U. (2007). Journal of Biotechnology, 128, 824–837.CrossRefGoogle Scholar
  24. 24.
    Marison, I. W., & Von Stockar, U. (1985). Thermochimica Acta, 85, 493–496.CrossRefGoogle Scholar
  25. 25.
    Wadso, I. (1985). Thermochimica Acta, 88, 35–48.CrossRefGoogle Scholar
  26. 26.
    Cooney, C. L., & Wang, D. I. C. (1968). Biotechnology and Bioengineering, 11, 269.CrossRefGoogle Scholar
  27. 27.
    Von Stockar, U., & Marison, I. W. (1991). Thermochimica Acta, 193, 215.CrossRefGoogle Scholar
  28. 28.
    Turker, M. (2004). Thermochimica Acta, 419, 73–81.CrossRefGoogle Scholar
  29. 29.
    Illanes, A., Torres, R., Cartagena, O., & Ruiz, A. (1993). Biological Research, 26, 357–364.Google Scholar
  30. 30.
    Olsson, A., Hagstron, T., Nilsson, B., Uhlen, M., & Gattenbeck, S. (1985). Applied and Environmental Microbiology, 49, 1081–1089.Google Scholar
  31. 31.
    Rajendhran, J., Krishnakumar, V., & Gunasekaran, P. (2002). Letters in Applied Microbiology, 35, 523–527.CrossRefGoogle Scholar
  32. 32.
    Balasingham, A., Warburton, D., Dunill, P., & Lilly, D. M. (1972). Biochem Biophy, 276, 230–236.Google Scholar
  33. 33.
    Miller, G.-L. (1956). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  34. 34.
    Singh, V. (1996). Biotechnology and Bioengineering, 52, 443–448.CrossRefGoogle Scholar
  35. 35.
    Chou, C. P., Tseng, J.-H., Lin, M.-I., Lin, H.-K., & Yu, C.-C. (1999). Journal of Biotechnology, 69(1), 27–38.CrossRefGoogle Scholar
  36. 36.
    Dai, M., Zhu, Y., Yang, Y., Wang, E., Xie, Y., Zhao, G., & Jiang, W. (2001). European Journal of Biochemistry, 268(5), 1298–1303.CrossRefGoogle Scholar
  37. 37.
    Vandamme, E. J., & Voets, J. P. (1974). Adv App Microbiol, 17, 311–369.CrossRefGoogle Scholar
  38. 38.
    Surianarayanan, M., Balaji, D., Senthilkumar, S., & AsitBaran, M. (2010). Biotechnology and Bioprocess Engineering, 15, 670–675.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Karthikeyan Rajendran
    • 1
  • Sudharshan Sekar
    • 2
  • Surianarayanan Mahadevan
    • 2
    Email author
  • Bhuvanesh Kumar Shanmugam
    • 2
  • Rajendhran Jeyaprakash
    • 3
  • Gunasekaran Paramasamy
    • 3
  • Asit Baran Mandal
    • 2
  1. 1.Department of BiotechnologyMepco Schlenk Engineering CollegeSivakasiIndia
  2. 2.Chemical Engineering DepartmentCentral Leather Research Institute (CLRI)ChennaiIndia
  3. 3.Centre for Excellence in Genomic Sciences, School of Biological SciencesMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations