Advertisement

Applied Biochemistry and Biotechnology

, Volume 172, Issue 8, pp 3827–3834 | Cite as

The Characteristics of Chitinase Expression in Aeromonas schubertii

  • Jeen-Kuan Chen
  • Chia-Rui Shen
  • Chao-Lin LiuEmail author
Article

Abstract

In this study, chitinase activity in an incubation broth of Aeromonas schubertii was measured using colloidal chitin azure as the substrate. More specifically, the induction of chitinases due to amendment with various carbon sources was examined. The highest chitinase activity was found following amendment with 0.5–1.0 % chitin powder, whereas the activity increased negligibly due to amendment with other carbon sources, such as glucose, GlcNAc, GlcN, sorbitol, sucrose, cellulose, or starch. The chitinase activity induced by the chitin powder was suppressed when the glucose, GlcNAc, GlcN, or starch was added simultaneously to the medium but was not suppressed by the addition of sorbitol, sucrose, or cellulose. The activity of chitinase in the crude extract was also not directly inhibited by glucose. Taken together, these findings suggest that the induction of chitinase activity depends on the acquisition of suitable carbon sources from the environment and that induction occurs at a regulatory level.

Keywords

Chitinase Aeromonas schubertii Carbon source Inhibition Induction 

Notes

Acknowledgments

We acknowledge the research funding from the National Science Council NSC101-2320-B-182-027-MY3 to C.R. Shen and 102-2221-E-131-023 to C.L. Liu. We appreciated the American Journal Experts for the careful reading of the manuscript.

References

  1. 1.
    Flach, J., Pilet, P. E., & Jolles, P. (1992). Experientia, 48, 701–716.CrossRefGoogle Scholar
  2. 2.
    Gooday, G. W. (1990). Advances in Microbial Ecology, 11, 387–430.CrossRefGoogle Scholar
  3. 3.
    Fuchs, R. L., McPherson, S. A., & Drahos, D. J. (1986). Applied and Environmental Microbiology, 51, 504–509.Google Scholar
  4. 4.
    Bakkers, J. F., Semino, C. E., Stroband, H., Kijne, J. W., Robbins, P. W., & Spaink, H. P. (1997). Proceedings of the National Academy of Sciences of the United States of America, 94, 7982–7986.CrossRefGoogle Scholar
  5. 5.
    Liu, C. L., Shen, C. R., Hsu, F. F., Chen, J. K., Wu, P. T., Guo, S. H., et al. (2009). Biotechnology Progress, 25, 124–131.CrossRefGoogle Scholar
  6. 6.
    Mukherjee, G., & Sen, S. K. (2006). Current Microbiology, 53, 265–269.CrossRefGoogle Scholar
  7. 7.
    Keyhani, N. O., & Roseman, S. (1999). Biochimica et Biophysica Acta, 1473, 108–122.CrossRefGoogle Scholar
  8. 8.
    Boyer, J. N. (1994). Applied and Environmental Microbiology, 60, 174–179.Google Scholar
  9. 9.
    Gooday, B. W. (1977). Journal of General Microbiology, 99, 1–11.CrossRefGoogle Scholar
  10. 10.
    Chen, J. K., Shen, C. R., & Liu, C. L. (2010). Marine Drugs, 8, 24932516.Google Scholar
  11. 11.
    Chen, J. K., Shen, C. R., Yeh, C. H., Fang, B. S., Huang, T. L., & Liu, C. L. (2011). International Journal of Molecular Sciences, 12, 1187–1195.CrossRefGoogle Scholar
  12. 12.
    Cohen-Kupiec, R., & Chet, I. (1998). Current Opinion in Biotechnology, 9, 270–277.CrossRefGoogle Scholar
  13. 13.
    Roberts, W. K., & Selitrenninijoff, C. P. (1988). Journal of General Microbiology, 134, 169–176.Google Scholar
  14. 14.
    Schlumbaum, A., Mauch, F., Vogeli, U., & Boller, T. (1986). Nature, 324, 365–367.CrossRefGoogle Scholar
  15. 15.
    Métraux, J. P., & Boller, T. (1986). Physiological and Molecular Plant Pathology, 28, 161–169.CrossRefGoogle Scholar
  16. 16.
    Tuzun, S., Rao, M. N., Vogeli, U., Schardl, C. L., & Kuc, J. (1989). Phytopathology, 79, 979–983.CrossRefGoogle Scholar
  17. 17.
    Spanu, P., Boller, T., Ludwig, A., Wiemken, A., Faccio, A., & Bonfante-Fasolo, P. (1989). Planta, 177, 447–455.CrossRefGoogle Scholar
  18. 18.
    Balasubramanian, R., & Manocha, M. S. (1986). Mycologia, 79, 979–983.Google Scholar
  19. 19.
    Fukamizo, T., & Kramer, K. J. (1985). Insect Biochemistry, 15, 1–7.CrossRefGoogle Scholar
  20. 20.
    Spindler-Barth, M., Shaaya, E., & Spindler, K. D. (1986). Insect Biochemistry, 16, 187–190.CrossRefGoogle Scholar
  21. 21.
    Ueno, H., & Miyashita, K. (2000). Soil Science and Plant Nutrition, 46, 863–871.CrossRefGoogle Scholar
  22. 22.
    Reguera, G., & Leschine, S. B. (2001). FEMS Microbiology Letters, 204, 367–374.CrossRefGoogle Scholar
  23. 23.
    Sakai, K., Yokota, A., Kurokawa, H., Wakayama, M., & Moriguchi, M. (1998). Applied and Environmental Microbiology, 64, 3397–3402.Google Scholar
  24. 24.
    Monzingo, A. F., Marcotte, E. M., Hart, P. J., & Robertus, J. D. (1996). Nature Structural Biology, 3, 133–140.CrossRefGoogle Scholar
  25. 25.
    Louise, C. A., Pedro, A., & Charlesa, H. (1999) Process for producing N-acetyl-d-glucosamine. The University of Bristish Columbia US.Google Scholar
  26. 26.
    Liu, C. L., Lin, T. H., & Juang, R. S. (2013). International Journal Of Biological Macromolecules, 62, 518–522.CrossRefGoogle Scholar
  27. 27.
    Yang, C. J., Liu, Y. K., Liu, C. L., Shen, C. N., Kuo, M. L., Su, C. C., et al. (2009). Human Gene Therapy, 20, 1597–1606.CrossRefGoogle Scholar
  28. 28.
    Hsu, S. C., & Lockwood, J. L. (1975). Applied Microbiology, 29, 422–426.Google Scholar
  29. 29.
    Shen, C. R., Chen, Y. S., Yang, C. J., Chen, J. K., & Liu, C. L. (2010). Journal of Biomolecular Screening, 15, 213–217.CrossRefGoogle Scholar
  30. 30.
    Malik, A., Wenuganen, S., Suwanto, A., & Tjahjono, B. (2003). Molecular Biotechnology, 23, 1–10.CrossRefGoogle Scholar
  31. 31.
    Imanaka, T., Fukui, T., & Fujiwara, S. (2001). Methods in Enzymology, 330, 319–329.CrossRefGoogle Scholar
  32. 32.
    Kole, M. M., & Altosaar, I. (1985). FEMS Microbiology Letters, 26, 265–269.CrossRefGoogle Scholar
  33. 33.
    Beguin, P., & Aubert, J. P. (1994). FEMS Microbiology Reviews, 13, 25–58.CrossRefGoogle Scholar
  34. 34.
    Gal, S. W., Choi, J. Y., Kim, C. Y., Cheong, Y. H., Choi, Y. J., Bahk, J. D., et al. (1997). FEMS Microbiology Letters, 151, 197–204.CrossRefGoogle Scholar
  35. 35.
    Jones, J. D., Grady, K. L., Suslow, T. V., & Bedbrook, J. R. (1986). The EMBO Journal, 5, 467–473.Google Scholar
  36. 36.
    Shiro, M., Ueda, M., Kawaguchi, T., & Arai, M. (1996). Biochimica et Biophysica Acta, 1305, 44–48.CrossRefGoogle Scholar
  37. 37.
    Tsujibo, H., Orikoshi, H., Shiotani, K., Hayashi, M., Umeda, J., Miyamoto, K., et al. (1998). Applied and Environmental Microbiology, 64, 472–478.Google Scholar
  38. 38.
    Miyashita, K., Fujii, T., Watanabe, A., & Ueno, H. (1997). Journal of Fermentation and Bioengineering, 83, 26–31.CrossRefGoogle Scholar
  39. 39.
    Tanaka, T., Fujiwara, S., Nishikori, S., Fukui, T., Takagi, M., & Imanaka, T. (1999). Applied and Environmental Microbiology, 65, 5338–5344.Google Scholar
  40. 40.
    Usui, T., & Matsui, H. (1989). Agricultural and Biological Chemistry, 53, 383–388.CrossRefGoogle Scholar
  41. 41.
    Jacob, F., & Monod, J. (1961). Journal of Molecular Biology, 3, 318–356.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Environment and Biotechnology, Refining and Manufacturing Research InstituteCPC CorporationChiayiTaiwan
  2. 2.Department of Medical Biotechnology and Laboratory Science, College of MedicineChang Gung UniversityTao-YuanTaiwan
  3. 3.Graduate School of Biochemical Engineering and Department of Chemical EngineeringMing Chi University of TechnologyNew TaipeiTaiwan

Personalised recommendations