Advertisement

Applied Biochemistry and Biotechnology

, Volume 172, Issue 8, pp 3844–3861 | Cite as

Structure and Properties of Bacterial Cellulose Produced Using a Trickling Bed Reactor

  • Hongmei LuEmail author
  • Xiaolin Jiang
Article

Abstract

Structure and properties of bacterial cellulose (BC) produced by trickling fermentation were studied. The following indexes, such as extrinsic shapes, microstructure, chemical structure, purity, water holding capacity, porosity, and thermogravimetric characteristics, are recommended for assessing the structure and properties of bacterial cellulose. With the comparison to bacterial cellulose produced by static fermentation and shaking fermentation, the results showed that for different BC cultivation methods, the extrinsic shapes, synthetic mode, and microstructure were different. The basic consistency of the infrared spectrogram from three kinds of bacterial cellulose reflected that the chemical structures were very similar. But the –OH associating degree of trickling fermentation BC was higher, and the polymerization degree, purity, water holding capacity, porosity, and thermal stability of trickling fermentation BC were also higher than those of static fermentation BC and shaking fermentation BC. But the crystallinity and crystal grain size of trickling fermentation BC were less than those of static fermentation BC and greater than those of shaking fermentation BC and plant fiber. These above structure and properties of trickling fermentation BC could reference bacterial cellulose’s application in food and material field.

Keywords

Bacterial cellulose Trickling fermentation Acetobacter xylinum Structure Property 

Notes

Acknowledgments

This study was sponsored by the National Natural Science Foundation of China (Grant No. 31160338) and Guizhou Province Science and Technology Fund (Grant No. [2010] 2066).

References

  1. 1.
    Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Bacterial cellulose—a masterpiece of nature’s arts. Journal of Materials Science, 35, 261–270.CrossRefGoogle Scholar
  2. 2.
    Wu, Z. Y., Li, C., Liang, H. W., Chen, J. F., & Yu, S. H. (2013). Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angewandte Chemie International Edition, 125, 2997–3001.CrossRefGoogle Scholar
  3. 3.
    Watanabe, K., Tabuchi, M., Morinaga, Y., & Yoshinaga, F. (1998). Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose, 5, 187–200.CrossRefGoogle Scholar
  4. 4.
    Chao, Y., Ishida, T., Sugano, Y., & Shoda, M. (2000). Bacterial cellulose production by Acetobacter xylinum in a 50-l internal-loop airlift reactor. Biotechnology and Bioengineering, 68, 345–352.CrossRefGoogle Scholar
  5. 5.
    Coucheron, D. H. (1991). An Acetobacter xylinum insertion sequence element associated with inactivation of cellulose production. Journal of Bacteriology, 173, 5723–5731.Google Scholar
  6. 6.
    Masayuki, O., Ikuro, H., Kiyoshi, T., & Tomoko, A. (2002). Silicone rubber membrane bioreactors for bacterial cellulose production. Biotechnology and Bioprocess Engineering, 7, 289–294.CrossRefGoogle Scholar
  7. 7.
    Shao, Z. Q. (2007). Cellulose ethers (pp. 226–227). Beijing: Chemical Industry.Google Scholar
  8. 8.
    Zhu, G. J., & Wang, Z. X. (1994). Industrial microbiology experiments technical manual (pp. 209–213). Beijing: China Light Industry.Google Scholar
  9. 9.
    Robertson, J. A., & Eastwood, M. A. (1981). An examination of factors which may affect the water holding capacity of dietary fibre. British Journal of Nutrition, 45, 83–87.CrossRefGoogle Scholar
  10. 10.
    Mancini, C. E., Berndt, C. C., Sun, L., & Kucuk, A. (2001). Porosity determinations in thermally sprayed hydroxyapatite coatings. Journal of Materials Science, 36, 3891–3896.CrossRefGoogle Scholar
  11. 11.
    Kitaoka, K., Yamamoto, H., Tani, T., Hoshijima, K., & Nakauchi, M. (1997). Mechanical strength and bone bonding of a titanium fiber mesh block for intervertebral fusion. Journal of Orthopaedic Science, 2, 106–113.CrossRefGoogle Scholar
  12. 12.
    Mihranyan, A., Llagostera, A. P., Karmhag, R., Strømme, M., & Ek, R. (2004). Moisture sorption by cellulose powders of varying crystallinity. International Journal of Pharmaceutics, 269, 433–442.CrossRefGoogle Scholar
  13. 13.
    Zhang, L. N., Xue, Q., Mo, Z. S., & Jin, X. (2003). Current researching methods on polymer physics (pp. 194–195). Hubei: Wuhan University.Google Scholar
  14. 14.
    Feng, Y. H., Li, J. C., Lin, Q., Wang, X. B., Wu, Z. X., Pang, S. J., et al. (2007). Crystallinity and thermal decomposition of dialdehyde celluloses from bacterial cellulose. Key Engineering Materials, 330–332, 1289–1292.CrossRefGoogle Scholar
  15. 15.
    Kunihiko, W., Mari, T., Yasushi, M., & Fumihiro, Y. (1998). Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose, 5, 187–200.CrossRefGoogle Scholar
  16. 16.
    Meng, L. Z., Gong, S. Z., & He, Y. B. (1997). Organic spectroscopy (pp. 265–290). Hubei: Wuhan University.Google Scholar
  17. 17.
    Wang, M. (2008). MsD thesis, Qing Dao University, Qing Dao, China.Google Scholar
  18. 18.
    Cheng, K. C., & Jeffrey, M. C. (2009). Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose, 16, 1033–1045.CrossRefGoogle Scholar
  19. 19.
    Zhao, X. X., Zhu, P., Wang, M., & Dong, Z. H. (2009). The comparison between bacterial cellulose and regenerated bacterial cellulose on structure and properties. Synthetic Fibre, 38, 6–10.Google Scholar
  20. 20.
    Ma, X. (2003). PhD thesis, Tianjin University of Technology, Tianjin, China.Google Scholar
  21. 21.
    Huang, D., & Wang, Q. L. (2008). Discussion on the production of bacterial cellulose by Acetobacter xylinum QAX993 fermentation conditions. China Brewing, 38, 36–37.Google Scholar
  22. 22.
    Oikawa, T., Morimo, T., & Ameyama, M. (1995). Production of cellulose from D-arabitol by Acetobacter xylinum. Bioscience, Biotechnology, and Biochemistry, 59(1564), 1565.Google Scholar
  23. 23.
    Tang, W. H., Jia, S., Jia, Y., & Yang, H. J. (2010). The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World Journal of Microbiology and Biotechnology, 26, 125–131.CrossRefGoogle Scholar
  24. 24.
    Karathanos, V. T., Kanellopoulos, N. K., & Belessiotis, V. G. (1996). Development of porous structure during air drying of agricultural plant products. Journal of Food Engineering, 29(167), 183.Google Scholar
  25. 25.
    Um, I. C., Ki, C. S., Kweon, H., Lee, K. G., Lhm, D. W., & Park, Y. H. (2004). Wet spinning of silk Polymer II. Effect of drawing on the structure characteristics and properties of filament. International Journal of Biological Macromolecules, 34, 107–119.CrossRefGoogle Scholar
  26. 26.
    Czaja, W., Romanovicz, D., & Brown, R. M. (2004). Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose, 11, 403–411.CrossRefGoogle Scholar
  27. 27.
    Borzani, W., & Desouza, S. J. (1995). Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitated liquid-media. Biotechnology Letters, 17, 1271–1272.CrossRefGoogle Scholar
  28. 28.
    Yoshino, T., Asakura, T., & Toda, K. (1996). Cellulose production by Acetobacter pasteurianus on silicon membrane. Journal of Fermentation and Bioengineering, 81, 32–36.CrossRefGoogle Scholar
  29. 29.
    Serafica, G., Mormino, R., & Bungay, H. (2002). Inclusion of solid particle in bacterial cellulose. Applied Microbiology and Biotechnology, 58, 756–760.CrossRefGoogle Scholar
  30. 30.
    Hornung, M., Ludwig, M., & Schmauder, H. P. (2007). Optimizing the production of bacterial cellulose in surface culture: a novel aeroso bioreactor working on a fed batch principle (part 3). Engineering in Life Sciences, 7, 35–41.CrossRefGoogle Scholar
  31. 31.
    Marx-Figini, M., & Pion, B. G. (1974). Kinetic investigations on biosynthesis of cellulose by Acetobacter xylinum. Biochimica et Biophysica Acta, 338, 382–393.CrossRefGoogle Scholar
  32. 32.
    Marx-Figini, M. (1982). The control of molecular weight and molecular weight distribution in the biogenesis of cellulose. In Cellulose and other natural polymer systems: biogenesis, structure, and degradation. Plenum, New York, pp. 243–271.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Guizhou Province Key Laboratory of Fermentation Engineering and BiopharmacyGuizhou UniversityGuiyangChina
  2. 2.Wine and Food Engineering CollegeGuizhou UniversityGuiyangChina

Personalised recommendations