Advertisement

Applied Biochemistry and Biotechnology

, Volume 172, Issue 8, pp 3862–3874 | Cite as

Evaluation of the Anaerobic Co-Digestion of Sewage Sludge and Tomato Waste at Mesophilic Temperature

  • Siham Belhadj
  • Yassine Joute
  • Hassan El Bari
  • Antonio Serrano
  • Aida Gil
  • José Á. Siles
  • Arturo F. Chica
  • M. Ángeles MartínEmail author
Article

Abstract

Sewage sludge is a hazardous waste, which must be managed adequately. Mesophilic anaerobic digestion is a widely employed treatment for sewage sludge involving several disadvantages such as low methane yield, poor biodegradability, and nutrient imbalance. Tomato waste was proposed as an easily biodegradable co-substrate to increase the viability of the process in a centralized system. The mixture proportion of sewage sludge and tomato waste evaluated was 95:5 (wet weight), respectively. The stability was maintained within correct parameters in an organic loading rate from 0.4 to 2.2 kg total volatile solids (VS)/m3 day. Moreover, the methane yield coefficient was 159 l/kg VS (0 °C, 1 atm), and the studied mixture showed a high anaerobic biodegradability of 95 % (in VS). Although the ammonia concentration increased until 1,864 ± 23 mg/l, no inhibition phenomenon was determined in the stability variables, methane yield, or kinetics parameters studied.

Keywords

Sewage sludge Tomato waste Mesophilic anaerobic co-digestion Methane yield Organic loading rate 

Notes

Acknowledgments

The authors are very grateful to the Spanish Ministry of Science and Innovation for co-funding this research through Project CTM2011-26350 and to the AECID for the economic support through the Projects D/024687/09, D/030888/10, and A1/039699/11.

References

  1. 1.
    Vall, M.P. (2001). Waste water in European countries. Statistics in Focus: Environment and Energy, 14, 8–14.Google Scholar
  2. 2.
    Wieland, U. (2003). Water use and waste water treatment in the EU and in Candidate Countries. Statistics in Focus: Environment and Energy, 13, 8–13.Google Scholar
  3. 3.
    Hendrickx, T. L. G., Elissen, H. J. H., & Buisman, C. J. N. (2009). Bioresource Technology, 100, 4642–4648.CrossRefGoogle Scholar
  4. 4.
    Council Directive of 26 April 1999 on the landfill use of waste. (Directive 1999/31/EC). Council of the European Communities.Google Scholar
  5. 5.
    Council Directive of 4 December 2000 on the incineration and the co-incineration of industrial and municipal solid waste (Directive 2000/76/EEC). Council of the European Communities.Google Scholar
  6. 6.
  7. 7.
    Koroneos, C. J., & Nanaki, E. A. (2012). Integrated solid waste management and energy production -- a life cycle assessment approach: The case study of the city of Thessaloniki. Journal of Cleaner Production, 27, 141–150.Google Scholar
  8. 8.
    Deng, W., Yan, J., Li, X., Wang, F., Chi, Y., & Lu, S. (2009). Emission characteristics of dioxins, furans and polycyclic aromatic hydrocarbons during fluidized-bed combustion of sewage sludge. Journal of Environmental Sciences, 21, 1747–1752.Google Scholar
  9. 9.
    Dean, R. B., & Suess, M. J. (1985). The risk to health of chemicals in sewage sludge applied to land. Waste Management and Research, 3(25), 1–278.Google Scholar
  10. 10.
    Staton, K.L., Alleman, J.E., Pressley, R.L., & Eloff, J. (2001). 2nd Generation Autothermal Thermophilic Aerobic Digestion: Conceptual Issues and Process Advancements. WEF/AWWA/CWEA joint residuals and biosolids management conference biosolids 2001: Building public support.Google Scholar
  11. 11.
    Iacovidou, E., Ohandja, D. G., & Voulvoulis, N. (2012). Food waste codigestion with sewage sludge-realising its potential in the UK. Journal of Environmental Management, 112, 267–274.Google Scholar
  12. 12.
    Wheatley, A. (1990). Anaerobic digestion: A waste treatment technology. London: Elsevier.Google Scholar
  13. 13.
    Buendía, I. M., Fernández, F. J., Villaseñor, J., & Rodríguez, L. (2009). Feasibility of anaerobic co-digestion as a treatment option of meat industry wastes. Bioresource Technology, 100, 1903–1909.Google Scholar
  14. 14.
    Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion, 34, 755–781.Google Scholar
  15. 15.
    Environment Agency (2010) Renewable energy potential for the water industry. https://connect.innovateuk.org/c/document_library/get_file?folderId=2023104&name=DLFE-20141.pdf
  16. 16.
    Chen, Y., Chen, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99, 4044–4064.Google Scholar
  17. 17.
    Jansen, J., Gruvberger, C., Hanner, N., Aspegren, H., & Svärd, A. (2004). Digestion of sludge and organic waste in the sustainability concept for Malmö, Sweden. Water Science and Technology, 49, 163–169.Google Scholar
  18. 18.
    Sosnowski, P., Wieczorek, A., & Ledakowicz, S. (2003). Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Advances in Environmental Research, 7, 609–616.Google Scholar
  19. 19.
    Marañón, E., Fernández, Y., & Castrillón, L. (2009). Manual de Estado del Arte de la Co-digestión Anaerobia de Residuos Ganaderos y Agroindustriales (2nd ed.). Oviedo: Universidad de Oviedo.Google Scholar
  20. 20.
  21. 21.
    Rossini, G., Toscano, G., Duca, D., Corinaldesi, F., Pedretti, E. F., & Riva, G. (2013). Analysis of the characteristics of the tomato anufacturing residues finalized to the energy recovery. Biomass and Bioenergy, 51, 177–182.Google Scholar
  22. 22.
    Field, J., Sierra-Alvarez, R., & Lettinga, G. (1988). 4° Seminario de Depuración Anaerobia de Aguas Residuales. Valladolid: University of Valladolid.Google Scholar
  23. 23.
    Cheng, F., Boe, K., & Angelidaki, I. (2011). Anaerobic co-digestion of by-products from sugar productions with cow manure. Water Research, 45, 3473–3480.Google Scholar
  24. 24.
    Fannin, K. F. (1987). In D. P. Chynoweth & R. Isaacson (Eds.), Anaerobic digestion of biomass: Vol. 1. Start-up, operation, stability and control (pp. 171–196). London: Elsevier.Google Scholar
  25. 25.
    Aiyuk, S., Forrez, I., Lieven, D. K., van Haandel, A., & Verstraete, W. (2006). Anaerobic and complementary treatment of domestic sewage in regions with hot climates  – a review. Bioresource Technology, 97, 2225–2241.Google Scholar
  26. 26.
    APHA. (1989). Standard methods for examination of water and wastewater (17th 6 ed.). Washington, DC: American Public Health Association.Google Scholar
  27. 27.
    Thompson, W. H., Leege, P. B., Millner, P. D., & Watson, M. E. (2001). Test methods for the examination of composting and compost. Bethesda: US Composting Council’.Google Scholar
  28. 28.
    Water Pollution Control Federation (WPCF) (1967). Anaerobic sludge digestion. Manual of practice No. 16. Alexandria, VA: Water Environment Federation.Google Scholar
  29. 29.
    Balaguer, M. D., Vicent, M. T., & Paris, J. M. (1992). Anaerobic fluidized bed reactor with sepiolite as support for anaerobic treatment of vinasses. Biotechnology Letters, 14, 433–438.Google Scholar
  30. 30.
    Gonzalez-Gonzalez, A., Cuadros, F., Ruiz-Celma, A., & López-Rodríguez, F. (2013). Energy-environmental benefits and economic feasibility of anaerobic codigestion of Iberian pig slaughterhouse and tomato industry wastes in Extremadura (Spain). Bioresource Technology, 136, 109–116.Google Scholar
  31. 31.
    Bouallagui, H., Lahdhed, H., Romdan, E. B., Rachdi, B., & Hamdi, M. (2009). Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. Journal of Environmental Management, 90, 1844–1849.Google Scholar
  32. 32.
    Lee, I., & Han, J. I. (2013). The effects of waste-activated sludge pretreatment using hydrodynamic cavitation for methane production. Ultrasonics Sonochemistry, 20, 1450–1455.Google Scholar
  33. 33.
    Nallathambi, V. (2004). Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass and Bioenergy, 26, 389–399.Google Scholar
  34. 34.
    Sarada, R., & Joseph, R. (1996). A comparative study of single and two stage processes for methane production from tomato processing waste. Process Biochemistry, 31, 337–340.Google Scholar
  35. 35.
    Van Assche, P., Poels, J., & Verstraete, W. (1983). Anaerobic digestion of pig manure with cellulose as co-substrate. Biotechnology Letters, 5, 749–754.Google Scholar
  36. 36.
    Mottet, A., François, E., Latrille, E., Steyer, J. P., Déléris, S., & Vedrenne, F. (2010). Estimating anaerobic biodegradability indicators for waste activated sludge. Chemical Engineering Journal, 160, 488–496.Google Scholar
  37. 37.
    Hills, D., & Nakano, K. (1984). Effects of particle size on anaerobic digestion of tomato solid wastes. Agricultural Wastes, 10, 285–295.Google Scholar
  38. 38.
    Borja, R., Martín, A., Banks, C. J., Alonso, V., & Chica, A. (1995). A kinetic study of anaerobic digestion of olive mill wastewater at mesophilic and thermophilic temperatures. Environmental Pollution, 88, 13–18.Google Scholar
  39. 39.
    Winkler, H. (1983). Biological treatment of wastewater. Chichester: Elis Horwood.Google Scholar
  40. 40.
    Gujer, W., & Zehnder, A. J. (1983). Conversion processes in anaerobic digestion. Water Science and Technology, 15, 123–167.Google Scholar
  41. 41.
    Martín, M. A., Fernández, R., Serrano, A., & Siles, J. A. (2013). Semi-continuous anaerobic co-digestion of orange peel waste and residual glycerol derived from biodiesel manufacturing. Waste Management, 33, 1633–1639.Google Scholar
  42. 42.
    Alphenaar, P. A., Sleyster, R., Reuver, P., Ligthart, G. J., & Lettinga, G. (1993). Phosphorus requirement in high-rate anaerobic wastewater treatment. Water Research, 27, 749–756.Google Scholar
  43. 43.
    Britz, T. J., Noeth, C., & Lategan, P. M. (1988). Nitrogen and phosphate requirements for the anaerobic digestion of a petrochemical effluent. Water Research, 22, 163–169.Google Scholar
  44. 44.
    Wild, D., Kisliakova, A., & Siegrist, H. (1997). Prediction of recycle phosphorus loads from anaerobic digestion. Water Research, 31, 2300–2308.Google Scholar
  45. 45.
    Marti, N., Ferrer, J., Seco, A., & Bouzas, A. (2008). Optimisation of sludge line management to enhance phosphorus recovery in WWTP. Water Research, 42, 4609–4618.Google Scholar
  46. 46.
    Sprott, G. D., & Patel, G. B. (1986). Ammonia toxicity in pure cultures of methanogenic bacteria system. Applied Applied Microbiology, 7, 358–363.Google Scholar
  47. 47.
    Gallert, C., Bauer, S., & Winter, J. (1998). Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population. Applied Microbiology and Biotechnology, 50, 495–501.Google Scholar
  48. 48.
    Emerson, K., Russo, R. C., Lund, R. E., & Thurston, R. V. (1975). Aqueous ammonia equilibrium calculation: Effect of pH and temperature. Journal of the Fisheries Research Board of Canada, 32, 2379–2383.Google Scholar
  49. 49.
    Sung, S., & Liu, T. (2003). Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere, 53, 43–52.Google Scholar
  50. 50.
    Bujoczek, G., Oleszkiewicz, J., Sparling, R., & Cenkiwski, S. (2000). High solid anaerobic digestion of chicken manure. Journal of Agricultural Engineering Research, 76, 51–60.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Siham Belhadj
    • 1
  • Yassine Joute
    • 1
  • Hassan El Bari
    • 1
  • Antonio Serrano
    • 2
  • Aida Gil
    • 2
  • José Á. Siles
    • 2
  • Arturo F. Chica
    • 2
  • M. Ángeles Martín
    • 2
    Email author
  1. 1.Laboratory of Environmental Biotechnology and Quality, Faculty of SciencesUniversity Ibn Tofail (Morocco)KenitraMorocco
  2. 2.Department of Chemical Engineering, Campus Universitario de RabanalesUniversity of Cordoba (Spain)CordobaSpain

Personalised recommendations