Skip to main content

Advertisement

Log in

Highly Potential Antifungal Activity of Quantum-Sized Silver Nanoparticles Against Candida albicans

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The antifungal activity of polyvinylpyrrolidone (PVP)-stabilized quantum-sized silver nanoparticles (SNPs) against the growth of Candida albicans has been demonstrated in the present study. C. albicans is a known opportunistic human pathogen causing superficial and systemic infections. Research data carried out on C. albicans so far have shown unequivocally that it develops resistance against conventional antifungal drugs and that the infections it causes are difficult to cure with conventional antifungal agents. Hence, it is urgent to find newer materials for the treatment of infections caused by C. albicans that must be safe for the host. PVP-capped SNPs were synthesized, and its surface plasmon band was observed at 410 nm. The growth of C. albicans was markedly inhibited when the cells were incubated with SNP. The minimum inhibitory concentration (MIC) of SNP was determined as 70 ng/ml, and this value is relatively lower when compared with the conventionally used antifungal drugs such as amphotericin B (0.5 μg/ml), fluconazole (0.5 μg/ml), and ketoconazole (8 μg/ml). The viability of SNP-treated cells was checked by measuring the metabolic activity using XTT assay. Field emission scanning electron microscopic (FE-SEM) and transmission electron microscopic (TEM) analyses of the cells treated with SNP have lost the structural integrity to a greater extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Perlroth, J., Choi, B., & Spellberg, B. (2007). Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Medical Mycology, 45, 321–346.

    Article  Google Scholar 

  2. Goffeau, A. (2008). Drug resistance: the fight against fungi. Nature, 452, 541–542.

    Article  CAS  Google Scholar 

  3. Jin, Y., Samaranayake, L. P., Samaranayake, Y., & Yip, H. K. (2004). Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Archives of Oral Biology, 49(10), 789–798.

    Article  CAS  Google Scholar 

  4. Levin, M. D., Hollander, J. G. D., Van der Holt, B., Rijnders, B. J., Vliet, M. V., Sonneveld, P., et al. (2007). Hepatotoxicity of oral and intravenous voriconazole in relation to cytochrome P450 polymorphisms. Journal of Antimicrobial Chemotherapy, 60(5), 1104–1107.

    Article  CAS  Google Scholar 

  5. Taxvig, C., Hass, U., Axelstad, M., Dalgaard, M., Boberq, J., Andeasen, H. R., et al. (2007). Endocrine-disrupting activities in vivo of the fungicides tebuconazole and epoxiconazole. Toxicological Sciences, 100(2), 464–473.

    Article  CAS  Google Scholar 

  6. Worth, L. J., Blyth, C. C., Booth, D. L., Kong, D. C., Marriott, D., Cassumbhoy, M., et al. (2008). Optimising antifungal drug dosing and monitoring to avoid toxicity and improve outcomes in patients with haematological disorders. Internal Medicine Journal, 38(6b), 521–537.

    Article  CAS  Google Scholar 

  7. Venkatakrishnan, K., Von Moltke, L. L., & Greenblatt, D. J. (2000). Effects of the antifungal agents on oxidative drug metabolism: clinical relevance. Clinical Pharmacokinetics, 38(2), 111–180.

    Article  CAS  Google Scholar 

  8. White, T. C., Holleman, S., Dy, F., Mirels, L. F., & Stevens, D. A. (2002). Resistance mechanisms in clinical isolates of Candida albicans. Antimicrobial Agents and Chemotherapy, 46(6), 1704–1713.

    Article  CAS  Google Scholar 

  9. Perea, S., Lopez-Ribot, J. L., Kirkpatrick, W. R., McAtee, R. K., Santillan, R. A., Martinez, M., et al. (2001). Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrobial Agents and Chemotherapy, 45(10), 2676–2684.

    Article  CAS  Google Scholar 

  10. Silver, S. (2003). Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiology Reviews, 27, 341–353.

    Article  CAS  Google Scholar 

  11. Klasen, H. J. (2000). A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns, 26(2), 131–138.

    Article  CAS  Google Scholar 

  12. Baker, C., Pradhan, A., Pakstis, L., Pochan, D. J., & Shah, S. I. (2005). Synthesis and antimicrobial properties of silver nanoparticles. Journal of Nanoscience and Nanotechnology, 5(2), 244–249.

    Article  CAS  Google Scholar 

  13. Melaiye, A., Sun, Z., Hindi, K., Milsted, A., Ely, D., Reneker, D. H., et al. (2005). Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. Journal of the American Chemical Society, 127(7), 2285–2291.

    Article  CAS  Google Scholar 

  14. Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobialagent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177–182.

    Article  CAS  Google Scholar 

  15. Liversidge, E. M., Liversidge, G. G., & Copper, E. R. (2003). Nanosizing: A formulation approach for poorly- water- soluble compounds. European Journal of Pharmaceutical Sciences, 18(2), 113–120.

    Article  Google Scholar 

  16. Brigger, I., Dubernet, C., & Couvreur, P. (2002). Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 54, 631–652.

    Article  CAS  Google Scholar 

  17. CLSI (2008b). Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard CLSI document M38-A2. Wayne: Clinical and Laboratory Standards Institute.

  18. Hartsel, S., & Bolard, J. (1996). Amphotericin B: new life for an old drug. Trends in Pharmacological Sciences, 17, 445–449.

    Article  CAS  Google Scholar 

  19. Ramage, G., Vande Walle, K., Wickes, B. L., & Lopez-Rebot, J. L. (2001). Standardisation method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrobial Agents and Chemotheraphy, 45, 2475–2479.

    Article  CAS  Google Scholar 

  20. Chan, W. C. W., Maxwell, D. J., Gao, X. H., Bailey, R. E., Han, M. Y., & Nie, S. M. (2002). Luminescent quantum dots for multiplexed biological detection and imaging. Current Opinion Biotechnology, 13(1), 40–46.

    Article  CAS  Google Scholar 

  21. Sondi, I., Siiman, O., Koester, S., & Matijevic, E. (2000). Preparation of aminodextran- CdS nanoparticle complexes and biologically active antibody-amino dextran-CdS nanoparticle conjugates. Langmuir, 16, 3107–3118.

    Article  CAS  Google Scholar 

  22. Zhao, G. J., & Stevens, S. E. (1998). Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals, 11, 27–32.

    Article  CAS  Google Scholar 

  23. Herrera, M., Carrion, P., Baca, P., Liebana, J., & Castillo, A. (2001). In vitro antibacterial activity of glass-ionomer cements. Microbios, 104, 141–148.

    CAS  Google Scholar 

  24. Klaus, T., Joerger, R., Olsson, E., & Granqvist, C. G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of National Academy of Sciences, USA, 96, 13611–13614.

    Article  CAS  Google Scholar 

  25. Wu, C., Mosher, B. P., Lyons, K., & Zeng, T. (2010). Reducing ability and mechanism for Polyvinylpyrrolidone (PVP) in silver nanoparticles synthesis. Journal of Nanoscience and Nanotechnology, 10, 2342–2347.

    Article  CAS  Google Scholar 

  26. Sahoo, P. K., Kalyan Kamal, S. S., Jagadeesh Kumar, T., Sreedhar, B., Singh, A. K., & Srivastava, S. K. (2009). Synthesis of silver nanoparticles using facile wet chemical route. Defence Science Journal, 59(4), 447–455.

    Article  CAS  Google Scholar 

  27. Jiang, L. P., Wang, A. N., Zhao, Y., Zhang, J. R., & Zhu, J. J. (2004). A novel route for the preparation of monodisperse silvernanoparticles via a pulsed sonoelectrochemical technique. Inorganic Chemistry Communications, 7(4), 506–509.

    Article  CAS  Google Scholar 

  28. Kvitek, L., Panacek, A., Soukupova, J., Kol, M., Vecero, R., Prucek, R., et al. (2008). Effect of surfactant and polymers on stability and antibacterial activity of silver Nanoparticles (NPs). Journal of Physical Chemistry C, 112, 5825–5834.

    Article  CAS  Google Scholar 

  29. Kim, K. J., Sung, W. S., Suh, B. K., Moon, S. K., Choi, J. S., Kim, J. G., et al. (2009). Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals, 22, 235–242.

    Article  CAS  Google Scholar 

  30. Hwang, E. T., Lee, J. H., Chae, Y. J., Kim, Y. S., Kim, B. C., Sang, B. J., et al. (2008). Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small, 4, 746–750.

    Article  CAS  Google Scholar 

  31. Niazi, J. H., Sang, B. I., Kim, Y. S., & Gu, M. B. (2011). Global Gene Response in Saccharomyces cerevisiae exposed to silver nanoparticles. Applied Biochemistry and Biotechnology, 164(8), 1278–1291.

    Article  CAS  Google Scholar 

  32. Klis, F. M., de Groot, P., & Hellingwerf, K. (2001). Molecular organization of the cell wall of Candida albicans. Medical Mycology, 39(1), 1–8.

    Article  CAS  Google Scholar 

  33. Latgé, J. P. (2010). Tasting the fungal cell wall. Cellular Microbiology, 12(7), 863–872.

    Article  Google Scholar 

  34. Cope, J. E. (1980). The porosity of the cell wall of Candida albicans. Journal of General Microbiology, 119, 253–255.

    CAS  Google Scholar 

  35. Basrai, M. A., Naider, F., & Becker, J. M. (1990). Internalization of lucifer yellow in Candida albicans by fluid phase endocytosis. Journal of General Microbiology, 136(6), 1059–1065.

    Article  CAS  Google Scholar 

  36. Etxeberria, E., Gonzalez, P., Fernandez, E. B., & Romero, J. P. (2006). Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells. Plant Signaling and Behavior, 1(4), 196–200.

    Article  Google Scholar 

  37. Johnston, D. A., Eberle, K. E., Sturtevant, J. E., & Palmer, G. E. (2009). Role for endosomal and vacuolar GTPases in Candida albicans pathogenesis. Infection and Immunity, 77(6), 2343–2355.

    Article  CAS  Google Scholar 

  38. Berman, J. (2006). Morphogenesis and cell cycle progression in Candida albicans. Current Opinion in Microbiology, 9, 595–601.

    Article  CAS  Google Scholar 

  39. Hwang, I. S., Lee, J., Hwang, J. H., Kim, K. J., & Lee, D. G. (2012). Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS Journal, 279(7), 1327–1338.

    Article  CAS  Google Scholar 

  40. Elechiguerra, J. L., Burt, J. L., Morones, J. R., Bragado, A. C., Gao, X., Lara, H. H., et al. (2005). Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology, 3, 6.

    Article  Google Scholar 

  41. Sun, L., Singh, A. K., Vig, K., Pillai, S. R., & Singh, S. R. (2008). Silver nanoparticles inhibit replication of respiratory syncytial virus. Journal of Biomedical Nanotechnology, 4, 149–158.

    CAS  Google Scholar 

  42. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T., et al. (2005). The bactericidal effect of silver nanoparticles. Journal of Nanotechnology, 16(10), 2346–2353.

    Article  CAS  Google Scholar 

  43. Kim, S. H., Lee, H. S., Ryu, D. S., Choi, S. J., & Lee, D. S. (2011). Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean Journal of Microbiology and Biotechnology, 39(1), 77–85.

    CAS  Google Scholar 

  44. Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6), 1712–1720.

    Article  CAS  Google Scholar 

  45. Panacek, A., Kolar, M., Vecerova, R., Prucek, R., Soukupova, J., Krystof, V., et al. (2009). Antifungal activity of silver nanoparticles against Candida spp. Biomaterials, 30(31), 6333–6340.

    Article  CAS  Google Scholar 

  46. Kvitek, L., Vanickova, M., Panacek, A., Soukupova, J., Dittrich, M., Valentova, E., et al. (2009). Initial study on the toxicity of silver nanoparticles (NPs) against Paramecium caudatum. Journal of Physical Chemistry C, 113, 4296–4300.

    Article  CAS  Google Scholar 

  47. Lee, H. J., Lee, S. G., Oh, E. J., Chung, H. Y., Han, S. I., Kim, E. J., et al. (2011). Antimicrobial polyethyleneimine silver nanoparticles in a stable colloidal dispersion. Colloids and Surfaces B: Biointerfaces, 88(1), 505–511.

    Article  CAS  Google Scholar 

  48. Choi, O., & Hu, Z. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science Technology, 42, 4583–4588.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Centre for Nanoscience and Nanotechnology, MHRD and DST-INSPIRE for financial support in the form of a research grant and junior research fellowships. Thanks is also due to Mr S. Prathap Augustine, technician, NCNSNT, for assisting us with FE-SEM and TEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palani Perumal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvaraj, M., Pandurangan, P., Ramasami, N. et al. Highly Potential Antifungal Activity of Quantum-Sized Silver Nanoparticles Against Candida albicans . Appl Biochem Biotechnol 173, 55–66 (2014). https://doi.org/10.1007/s12010-014-0782-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0782-9

Keywords

Navigation