Skip to main content
Log in

Direct Fermentation of Gelatinized Cassava Starch to Acetone, Butanol, and Ethanol Using Clostridium acetobutylicum Mutant Obtained by Atmospheric and Room Temperature Plasma

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The mutant strain designated as ART18, obtained from the wild-type strain Clostridium acetobutylicum PW12 treated by atmospheric and room temperature plasma, showed higher solvent tolerance and butanol production than that of the wild-type strain. The production of butanol was 11.3 ± 0.5 g/L, 31 % higher than that of the wild-type strain when it was used for acetone, butanol, and ethanol fermentation in P2 medium. Furthermore, the effects of cassava flour concentration, pH regulators, and vitamins on the ABE production were also investigated. The highest butanol production of 15.8 ± 0.8 g/L and butanol yield (0.31 g/g) were achieved after the above factors were optimized. When acetone, butanol, and ethanol fermentation by ART18 was carried out in a 15-L bioreactor, the butanol production, the productivity of butanol, and the total solvent were 16.3 ± 0.9, 0.19, and 0.28 g/L/h, respectively. These results indicate that ART18 is a promising industrial producer in ABE fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Knoshaug, E. P., & Zhang, M. (2009). Applied Biochemistry and Biotechnology, 153(1–3), 13–20.

    Article  CAS  Google Scholar 

  2. Wu, Y.-D., Xue, C., Chen, L.-J., & Bai, F.-W. (2013). Journal of Biotechnology, 165, 18–21.

    Article  CAS  Google Scholar 

  3. Gao, K., Li, Y., Tian, S., & Yang, X. (2012). World Journal of Microbial Biotechnology, 28(10), 2963–2971.

    Article  CAS  Google Scholar 

  4. Qureshi, N., & Blaschek, H. P. (2000). Food and Bioproducts Processing, 78(3), 139–144.

    Article  Google Scholar 

  5. Ezeji, T., Qureshi, N., & Blaschek, H. P. (2007). Biotechnology and Bioengineering, 97(6), 1460–1469.

    Article  CAS  Google Scholar 

  6. Thirmal, C., & Dahman, Y. (2012). The Canadian Journal of Chemical Engineering, 90(3), 745–761.

    Article  CAS  Google Scholar 

  7. Grace, M. (1977) Cassava processing. FAO

  8. Thang, V. H., Kanda, K., & Kobayashi, G. (2010). Applied Biochemistry and Biotechnology, 161, 157–170.

    Article  CAS  Google Scholar 

  9. Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J., & Jung, K. S. (2008). Biotechnology and Bioengineering, 101(2), 209–228.

    Article  CAS  Google Scholar 

  10. Han-guang, L., Wei, L., Qiu-ya, G., Qiang, W., Wen-jun, H., & Xiao-bin, Y. (2013). Bioresource Technology, 137, 254–260.

    Article  CAS  Google Scholar 

  11. Olano, C., Lombó, F., Méndez, C., & Salas, J. A. (2008). Metabolic Engineering, 10(5), 281–292.

    Article  CAS  Google Scholar 

  12. Wang, L. Y., Huang, Z. L., Li, G., Zhao, H. X., Xing, X. H., Sun, W. T., et al. (2010). Journal of Applied Microbiology, 108(3), 851–858.

    Article  CAS  Google Scholar 

  13. Setlhaku, M., Brunberg, S., Villa, E. A., & Wichmann, R. (2012). Journal of Biotechnology, 161(2), 147–152.

    Article  CAS  Google Scholar 

  14. Qureshi, N., & Blaschek, H. P. (1999). Biomass Bioenergy, 17(2), 175–184.

    Article  CAS  Google Scholar 

  15. Loyarkat, S., Cheirsilp, B., Umsakul, K. (2013). Applied Biochemistry and Biotechnology, 171(7), 1726–1738.

    Google Scholar 

  16. Hua, X., Wang, J., Wu, Z., Zhang, H., Li, H., Xing, X., et al. (2010). Biochemical Engineering Journal, 49(2), 201–206.

    Article  CAS  Google Scholar 

  17. Lu, C., Zhao, J., Yang, S.-T., & Wei, D. (2012). Bioresource Technology, 104, 380–387.

    Article  CAS  Google Scholar 

  18. Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2007). Journal of Industrial Microbiology and Biotechnology, 34(12), 771–777.

    Article  CAS  Google Scholar 

  19. Liu, Z., Ying, Y., Li, F., Ma, C., & Xu, P. (2010). Journal of Industrial Microbiology and Biotechnology, 37(5), 495–501.

    Article  CAS  Google Scholar 

  20. Guo, T., Tang, Y., Zhang, Q.-y., Du, T.-f., Liang, D.-f., Jiang, M., et al. (2012). Journal of Industrial Microbiology and Biotechnology, 39(3), 401–407.

    Article  CAS  Google Scholar 

  21. Gu, Y., Hu, S., Chen, J., Shao, L., He, H., Yang, Y., et al. (2009). Journal of Industrial Microbiology and Biotechnology, 36(9), 1225–1232.

    Article  CAS  Google Scholar 

  22. Madihah, M., Ariff, A., Sahaid, K., Suraini, A., & Karim, M. (2001). World Journal of Microbial Biotechnology, 17(6), 567–576.

    Article  CAS  Google Scholar 

  23. Woods, D. R. (1995). Trends in Biotechnology, 13(7), 259–264.

    Article  CAS  Google Scholar 

  24. Bryant, D. L., & Blaschek, H. P. (1988). Journal of Industrial Microbiology, 3(1), 49–55.

    Article  CAS  Google Scholar 

  25. Isar, J., & Rangaswamy, V. (2012). Biomass Bioenergy, 37, 9–15.

    Article  CAS  Google Scholar 

  26. Han, B., Ujor, V., Lai, L. B., Gopalan, V., & Ezeji, T. C. (2013). Applied and Environmental Microbiology, 79(1), 282–293.

    Article  CAS  Google Scholar 

  27. Richmond, C., Han, B., & Ezeji, T. (2011). Continental Journal of Microbiology, 5(1), 18–28.

    Google Scholar 

  28. Soni, B., Soucaille, P., & Goma, G. (1987). Applied Microbiology and Biotechnology, 25(4), 317–321.

    Article  CAS  Google Scholar 

  29. Soni, B., Soucaille, P., & Goma, G. (1987). Applied Microbiology and Biotechnology, 27(1), 1–5.

    Article  CAS  Google Scholar 

  30. Liu, D., Chen, Y., Li, A., Ding, F., Zhou, T., He, Y., et al. (2013). Bioresource Technology, 129, 321–328.

    Article  CAS  Google Scholar 

  31. Cheng, C.-L., Che, P.-Y., Chen, B.-Y., Lee, W.-J., Chien, L.-J., & Chang, J.-S. (2012). Bioresource Technology, 113, 58–64.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21176105), the Fundamental Research Funds for the Central Universities (Grant No. JUSRP111A24), Program of the Key Laboratory of Industrial Biotechnology, Ministry of Education, China (Grant No. KLIB-KF201105), the 111 Project (No. 111-2-06), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-bin Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Hg., Luo, W., Wang, Q. et al. Direct Fermentation of Gelatinized Cassava Starch to Acetone, Butanol, and Ethanol Using Clostridium acetobutylicum Mutant Obtained by Atmospheric and Room Temperature Plasma. Appl Biochem Biotechnol 172, 3330–3341 (2014). https://doi.org/10.1007/s12010-014-0765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0765-x

Keyword

Navigation