Skip to main content

Advertisement

Log in

Production of Crude Cellulase and Xylanase From Trichoderma harzianum PPDDN10 NFCCI-2925 and Its Application in Photocopier Waste Paper Recycling

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This paper implies production of cellulase and xylanase enzyme using a potent strain of Trichoderma harzianum for the efficient deinking of photocopier waste papers. Different nutritional and environmental factors were optimized for higher production of cellulase along with xylanase. After fermentation, maximum enzyme extraction was achieved from fermented matter using a three-step extraction process with increased efficiency by 26.6–29.3 % over single-step extraction. Static solid state was found as the best fermentation type using wheat bran (WB) as carbon source and ammonium ferrous sulfate (0.02 M) as nitrogen source. Subsequently, inoculum size (8 × 106 CFU/gds), incubation days (4 days), temperature (34 °C), initial pH (6.0), and moisture ratio (1:3) significantly affected the enzyme production. Cellulase and xylanase activities were found to be maximum at pH 5.5 and temperature 55–60 °C with good stability (even up to 6 h). Furthermore, this crude enzyme was evaluated for the deinking of photocopier waste papers without affecting the strength properties with improved drainage as an additional advantage. The crude enzyme-deinked pulp showed 23.6 % higher deinking efficiency and 3.2 % higher brightness than chemically deinked pulp. Strength properties like tensile, burst indices, and folding endurance were also observed to improve by 6.7, 13.4, and 10.3 %, respectively, for enzyme-deinked pulp. However, the tear index was decreased by 10.5 %. The freeness of the pulp was also increased by 21.6 % with reduced drainage time by 13.9 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aristidou, A., & Penttilä, M. (2000). Current Opinion in Biotechnology, 1, 187–198.

    Article  Google Scholar 

  2. Romaní, A. M., Fischer, H., Mille-Lindblom, C., & Tranvik, L. J. (2006). Ecology, 87, 2559–2569.

    Article  Google Scholar 

  3. Seyis, I., & Aksoz, N. (2005). Food Technology and Biotechnology, 43, 37–40.

    CAS  Google Scholar 

  4. Soni, R., Nazir, A., & Chadha, B. S. (2010). Industrial Crops and Products, 31, 277–283.

    Article  CAS  Google Scholar 

  5. Liu, H. Q., Feng, Y., Zhao, D. Q., & Jiang, J. X. (2012). Biodegradation, 23, 465–472.

    Article  CAS  Google Scholar 

  6. Bhat, M. K. (2000). Biotechnology Advances, 18, 355–383.

    Article  CAS  Google Scholar 

  7. Fadel, M. (2001). Annals of Microbiology, 51, 61–78.

    CAS  Google Scholar 

  8. Pathak, P., Bhardwaj, N. K., & Singh, A. K. (2010). IPPTA Journal, 22, 83–88.

    Google Scholar 

  9. Pathak, P., Bhardwaj, N. K., & Singh, A. K. (2011). Bioresources, 6, 447–463.

    CAS  Google Scholar 

  10. Pandey, A., Soccol, C. R., & Mitchell, D. (2000). Process Biochemistry, 35, 1153–1169.

    Article  CAS  Google Scholar 

  11. Brijwani, K., Oberoi, H. S., & Vadlani, P. V. (2010). Process Biochemistry, 45, 120–128.

    Article  CAS  Google Scholar 

  12. Rahnama, N., Mamat, S., Shah, U. K. M., Ling, F. H., Rahman, N. A. A., & Ariff, A. B. (2013). Bioresources, 8(2), 2881–2896.

    Article  Google Scholar 

  13. Senior, D. J., Mayers, P. R., & Saddler, J. N. (1989). Applied Microbiology and Biotechnology, 32(2), 137–142.

    Article  CAS  Google Scholar 

  14. Aro, N., Saloheimo, A., Ilmen, M., & Penttila, M. (2001). Journal of Biological Chemistry, 276, 24309–24314.

    Article  CAS  Google Scholar 

  15. Kocher, G. S., Kalra, K. L. and Banta, G. (2008). The Internet J Microbiol., 5.

  16. Isil, S., & Nilufer, A. (2005). Brazilian Archives of Biology and Technology, 48, 187–193.

    Article  CAS  Google Scholar 

  17. Sakthiselvan, P., Naveena, B., & Partha, N. (2012). African Journal of Biotechnology, 11, 12067–12077.

    CAS  Google Scholar 

  18. Bajpai, P., & Bajpai, P. K. (1998). TAPPI Journal, 81, 111–117.

    CAS  Google Scholar 

  19. Bajpai, P. K. (2010). BioResources, 5, 1311–1325.

    CAS  Google Scholar 

  20. Gübitz, G. M., Mansfield, S. D., Böhm, D., & Saddler, J. N. (1998). Journal of Biotechnology, 65, 209–215.

    Article  Google Scholar 

  21. Vyas, S., & Lachke, A. (2003). Enzyme and Microbial Technology, 32, 236.

    Article  CAS  Google Scholar 

  22. Jeffries, T. W., Klungness, J. H., Marguerite, S., & Cropsey, K. R. (1994). TAPPI Journal, 77, 173–179.

    CAS  Google Scholar 

  23. Pala, H., Mota, M., & Gama, F. M. (2004). Journal of Biotechnology, 108, 79–89.

    Article  CAS  Google Scholar 

  24. Singh, A., Yadav, R. D., Kaur, A., & Mahajan, R. (2012). Bioresource Technology, 120, 322–332.

    Article  CAS  Google Scholar 

  25. Maity, C., Ghosh, K., Halder, S. K., Jana, A., Adak, A., Mohapatra, P. K. D., et al. (2012). Applied Biochemistry and Biotechnology, 167, 1208–1219.

    Article  CAS  Google Scholar 

  26. Teather, R. M., & Wood, P. J. (1982). Applied and Environmental Microbiology, 43, 777–780.

    CAS  Google Scholar 

  27. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    CAS  Google Scholar 

  28. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  29. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  30. Blix, G. (1948). Acta Chemica Scandinavica, 2, 467–473.

    Article  CAS  Google Scholar 

  31. Deswal, D., Khasa, Y. P., & Kuhad, R. C. (2011). Bioresource Technology, 102, 6065–6072.

    Article  CAS  Google Scholar 

  32. Rezende, M. I., Barbosa, A. D. M., Vasconcelos, A. F. D., & Endo, A. S. (2002). Brazilian Journal of Microbiology, 33, 67–72.

    Article  CAS  Google Scholar 

  33. Silva, R. D., Lago, E. S., Merheb, C. W., Macchione, M. M., Park, Y. K., & Gomes, E. (2005). Brazilian Journal of Microbiology, 36, 235–241.

    Google Scholar 

  34. Mitchell, D. A., & Lonsane, B. K. (1992). In H. W. Doelle, D. A. Mitchell, & C. E. Rolz (Eds.), Definition, characteristics and potential in solid substrate cultivation: solid state fermentation (pp. 455–467). Elsevier, NY: Applied Science.

    Google Scholar 

  35. Viniegra-González, G., & Favela-Torres, E. (2006). Food Technology, 44(3), 397–406.

    Google Scholar 

  36. Sherief, A., El-Tanash, A., & Atia, N. (2010). Research Journal of Microbiology, 5, 199–211.

    Article  CAS  Google Scholar 

  37. Sanghi, A., Garg, N., Sharma, J., Kuhar, K., Kuhad, R. C., & Gupta, V. K. (2008). World Journal of Microbiology & Biotechnology, 24, 633–640.

    Article  CAS  Google Scholar 

  38. Silveira, F. D. P., Sousa, M. D., Ricart, C. A. O., Milagres, A. M. F., & Medeiros, C. D. (1999). Journal of Industrial Microbiology & Biotechnology, 23, 682–685.

    Article  CAS  Google Scholar 

  39. Ahmed, S., Imdad, S. S., & Jamil, A. (2012). Electronic Journal of Biotechnology, 15, 3–3.

    Article  Google Scholar 

  40. Deschamps, F., Giuliano, C., Asther, M., Huet, M. C., & Roussos, S. (1985). Biotechnology and bioengineering, 27(9), 1385–1388.

    Article  CAS  Google Scholar 

  41. Xin, F., & Geng, A. (2010). Applied Biochemistry and Biotechnology, 162(1), 295–306.

    Article  CAS  Google Scholar 

  42. Rocky-Salimi, K., & Hamidi-Esfahani, Z. (2010). Food Bioprod. Process, 88, 61–66.

    Article  CAS  Google Scholar 

  43. Kaur, S., Dhillon, G. S., Brar, S. K., & Chauhan, V. B. (2012). Industrial Crops and Products, 36, 140–148.

    Article  CAS  Google Scholar 

  44. Maeda, R. N., da Silva, M. M. P., Santa Anna, L. M. M., & Pereira, N., Jr. (2010). Applied Biochemistry and Biotechnology, 161, 411–422.

    Article  CAS  Google Scholar 

  45. Stewart, J. C., & Parry, J. B. (1981). Journal of General Microbiology, 125, 33–39.

    CAS  Google Scholar 

  46. Virupakshi, S., Babu, K. G., Gaikwad, S. R., & Naik, G. R. (2005). Process Biochemistry, 40, 431–435.

    Article  CAS  Google Scholar 

  47. Lee, C. K., Darah, I., & Ibrahim, V. O. (2007). Bioresource Technology, 98, 1684–1689.

    Article  CAS  Google Scholar 

  48. Heise, O. U., Unwin, J. P., Klungness, J. H., Fineran, W. G., Sykes, J., & Abubakr, S. (1996). TAPPI Journal, 79, 207–212.

    CAS  Google Scholar 

Download references

Acknowledgment

Puneet Pathak acknowledges the Ministry of Human Resource Development, Government of India, for providing an MHRD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishi Kant Bhardwaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathak, P., Bhardwaj, N.K. & Singh, A.K. Production of Crude Cellulase and Xylanase From Trichoderma harzianum PPDDN10 NFCCI-2925 and Its Application in Photocopier Waste Paper Recycling. Appl Biochem Biotechnol 172, 3776–3797 (2014). https://doi.org/10.1007/s12010-014-0758-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0758-9

Keywords

Navigation