Advertisement

Applied Biochemistry and Biotechnology

, Volume 172, Issue 8, pp 3776–3797 | Cite as

Production of Crude Cellulase and Xylanase From Trichoderma harzianum PPDDN10 NFCCI-2925 and Its Application in Photocopier Waste Paper Recycling

  • Puneet Pathak
  • Nishi Kant BhardwajEmail author
  • Ajay Kumar Singh
Article

Abstract

This paper implies production of cellulase and xylanase enzyme using a potent strain of Trichoderma harzianum for the efficient deinking of photocopier waste papers. Different nutritional and environmental factors were optimized for higher production of cellulase along with xylanase. After fermentation, maximum enzyme extraction was achieved from fermented matter using a three-step extraction process with increased efficiency by 26.6–29.3 % over single-step extraction. Static solid state was found as the best fermentation type using wheat bran (WB) as carbon source and ammonium ferrous sulfate (0.02 M) as nitrogen source. Subsequently, inoculum size (8 × 106 CFU/gds), incubation days (4 days), temperature (34 °C), initial pH (6.0), and moisture ratio (1:3) significantly affected the enzyme production. Cellulase and xylanase activities were found to be maximum at pH 5.5 and temperature 55–60 °C with good stability (even up to 6 h). Furthermore, this crude enzyme was evaluated for the deinking of photocopier waste papers without affecting the strength properties with improved drainage as an additional advantage. The crude enzyme-deinked pulp showed 23.6 % higher deinking efficiency and 3.2 % higher brightness than chemically deinked pulp. Strength properties like tensile, burst indices, and folding endurance were also observed to improve by 6.7, 13.4, and 10.3 %, respectively, for enzyme-deinked pulp. However, the tear index was decreased by 10.5 %. The freeness of the pulp was also increased by 21.6 % with reduced drainage time by 13.9 %.

Keywords

Cellulase Xylanase Trichoderma harzianum Deinking Drainage Photocopier waste paper 

Notes

Acknowledgment

Puneet Pathak acknowledges the Ministry of Human Resource Development, Government of India, for providing an MHRD scholarship.

References

  1. 1.
    Aristidou, A., & Penttilä, M. (2000). Current Opinion in Biotechnology, 1, 187–198.CrossRefGoogle Scholar
  2. 2.
    Romaní, A. M., Fischer, H., Mille-Lindblom, C., & Tranvik, L. J. (2006). Ecology, 87, 2559–2569.CrossRefGoogle Scholar
  3. 3.
    Seyis, I., & Aksoz, N. (2005). Food Technology and Biotechnology, 43, 37–40.Google Scholar
  4. 4.
    Soni, R., Nazir, A., & Chadha, B. S. (2010). Industrial Crops and Products, 31, 277–283.CrossRefGoogle Scholar
  5. 5.
    Liu, H. Q., Feng, Y., Zhao, D. Q., & Jiang, J. X. (2012). Biodegradation, 23, 465–472.CrossRefGoogle Scholar
  6. 6.
    Bhat, M. K. (2000). Biotechnology Advances, 18, 355–383.CrossRefGoogle Scholar
  7. 7.
    Fadel, M. (2001). Annals of Microbiology, 51, 61–78.Google Scholar
  8. 8.
    Pathak, P., Bhardwaj, N. K., & Singh, A. K. (2010). IPPTA Journal, 22, 83–88.Google Scholar
  9. 9.
    Pathak, P., Bhardwaj, N. K., & Singh, A. K. (2011). Bioresources, 6, 447–463.Google Scholar
  10. 10.
    Pandey, A., Soccol, C. R., & Mitchell, D. (2000). Process Biochemistry, 35, 1153–1169.CrossRefGoogle Scholar
  11. 11.
    Brijwani, K., Oberoi, H. S., & Vadlani, P. V. (2010). Process Biochemistry, 45, 120–128.CrossRefGoogle Scholar
  12. 12.
    Rahnama, N., Mamat, S., Shah, U. K. M., Ling, F. H., Rahman, N. A. A., & Ariff, A. B. (2013). Bioresources, 8(2), 2881–2896.CrossRefGoogle Scholar
  13. 13.
    Senior, D. J., Mayers, P. R., & Saddler, J. N. (1989). Applied Microbiology and Biotechnology, 32(2), 137–142.CrossRefGoogle Scholar
  14. 14.
    Aro, N., Saloheimo, A., Ilmen, M., & Penttila, M. (2001). Journal of Biological Chemistry, 276, 24309–24314.CrossRefGoogle Scholar
  15. 15.
    Kocher, G. S., Kalra, K. L. and Banta, G. (2008). The Internet J Microbiol., 5.Google Scholar
  16. 16.
    Isil, S., & Nilufer, A. (2005). Brazilian Archives of Biology and Technology, 48, 187–193.CrossRefGoogle Scholar
  17. 17.
    Sakthiselvan, P., Naveena, B., & Partha, N. (2012). African Journal of Biotechnology, 11, 12067–12077.Google Scholar
  18. 18.
    Bajpai, P., & Bajpai, P. K. (1998). TAPPI Journal, 81, 111–117.Google Scholar
  19. 19.
    Bajpai, P. K. (2010). BioResources, 5, 1311–1325.Google Scholar
  20. 20.
    Gübitz, G. M., Mansfield, S. D., Böhm, D., & Saddler, J. N. (1998). Journal of Biotechnology, 65, 209–215.CrossRefGoogle Scholar
  21. 21.
    Vyas, S., & Lachke, A. (2003). Enzyme and Microbial Technology, 32, 236.CrossRefGoogle Scholar
  22. 22.
    Jeffries, T. W., Klungness, J. H., Marguerite, S., & Cropsey, K. R. (1994). TAPPI Journal, 77, 173–179.Google Scholar
  23. 23.
    Pala, H., Mota, M., & Gama, F. M. (2004). Journal of Biotechnology, 108, 79–89.CrossRefGoogle Scholar
  24. 24.
    Singh, A., Yadav, R. D., Kaur, A., & Mahajan, R. (2012). Bioresource Technology, 120, 322–332.CrossRefGoogle Scholar
  25. 25.
    Maity, C., Ghosh, K., Halder, S. K., Jana, A., Adak, A., Mohapatra, P. K. D., et al. (2012). Applied Biochemistry and Biotechnology, 167, 1208–1219.CrossRefGoogle Scholar
  26. 26.
    Teather, R. M., & Wood, P. J. (1982). Applied and Environmental Microbiology, 43, 777–780.Google Scholar
  27. 27.
    Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.Google Scholar
  28. 28.
    Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.CrossRefGoogle Scholar
  29. 29.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.Google Scholar
  30. 30.
    Blix, G. (1948). Acta Chemica Scandinavica, 2, 467–473.CrossRefGoogle Scholar
  31. 31.
    Deswal, D., Khasa, Y. P., & Kuhad, R. C. (2011). Bioresource Technology, 102, 6065–6072.CrossRefGoogle Scholar
  32. 32.
    Rezende, M. I., Barbosa, A. D. M., Vasconcelos, A. F. D., & Endo, A. S. (2002). Brazilian Journal of Microbiology, 33, 67–72.CrossRefGoogle Scholar
  33. 33.
    Silva, R. D., Lago, E. S., Merheb, C. W., Macchione, M. M., Park, Y. K., & Gomes, E. (2005). Brazilian Journal of Microbiology, 36, 235–241.Google Scholar
  34. 34.
    Mitchell, D. A., & Lonsane, B. K. (1992). In H. W. Doelle, D. A. Mitchell, & C. E. Rolz (Eds.), Definition, characteristics and potential in solid substrate cultivation: solid state fermentation (pp. 455–467). Elsevier, NY: Applied Science.Google Scholar
  35. 35.
    Viniegra-González, G., & Favela-Torres, E. (2006). Food Technology, 44(3), 397–406.Google Scholar
  36. 36.
    Sherief, A., El-Tanash, A., & Atia, N. (2010). Research Journal of Microbiology, 5, 199–211.CrossRefGoogle Scholar
  37. 37.
    Sanghi, A., Garg, N., Sharma, J., Kuhar, K., Kuhad, R. C., & Gupta, V. K. (2008). World Journal of Microbiology & Biotechnology, 24, 633–640.CrossRefGoogle Scholar
  38. 38.
    Silveira, F. D. P., Sousa, M. D., Ricart, C. A. O., Milagres, A. M. F., & Medeiros, C. D. (1999). Journal of Industrial Microbiology & Biotechnology, 23, 682–685.CrossRefGoogle Scholar
  39. 39.
    Ahmed, S., Imdad, S. S., & Jamil, A. (2012). Electronic Journal of Biotechnology, 15, 3–3.CrossRefGoogle Scholar
  40. 40.
    Deschamps, F., Giuliano, C., Asther, M., Huet, M. C., & Roussos, S. (1985). Biotechnology and bioengineering, 27(9), 1385–1388.CrossRefGoogle Scholar
  41. 41.
    Xin, F., & Geng, A. (2010). Applied Biochemistry and Biotechnology, 162(1), 295–306.CrossRefGoogle Scholar
  42. 42.
    Rocky-Salimi, K., & Hamidi-Esfahani, Z. (2010). Food Bioprod. Process, 88, 61–66.CrossRefGoogle Scholar
  43. 43.
    Kaur, S., Dhillon, G. S., Brar, S. K., & Chauhan, V. B. (2012). Industrial Crops and Products, 36, 140–148.CrossRefGoogle Scholar
  44. 44.
    Maeda, R. N., da Silva, M. M. P., Santa Anna, L. M. M., & Pereira, N., Jr. (2010). Applied Biochemistry and Biotechnology, 161, 411–422.CrossRefGoogle Scholar
  45. 45.
    Stewart, J. C., & Parry, J. B. (1981). Journal of General Microbiology, 125, 33–39.Google Scholar
  46. 46.
    Virupakshi, S., Babu, K. G., Gaikwad, S. R., & Naik, G. R. (2005). Process Biochemistry, 40, 431–435.CrossRefGoogle Scholar
  47. 47.
    Lee, C. K., Darah, I., & Ibrahim, V. O. (2007). Bioresource Technology, 98, 1684–1689.CrossRefGoogle Scholar
  48. 48.
    Heise, O. U., Unwin, J. P., Klungness, J. H., Fineran, W. G., Sykes, J., & Abubakr, S. (1996). TAPPI Journal, 79, 207–212.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Puneet Pathak
    • 1
    • 2
  • Nishi Kant Bhardwaj
    • 2
    Email author
  • Ajay Kumar Singh
    • 1
  1. 1.Department of Paper TechnologyIndian Institute of Technology RoorkeeSaharanpurIndia
  2. 2.Avantha Centre for Industrial Research and DevelopmentPaper Mill CampusYamuna NagarIndia

Personalised recommendations