Skip to main content
Log in

Modification of Lysine Residues of Horseradish Peroxidase and Its Effect on Stability and Structure of the Enzyme

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biotechnology is consistently seeking improved enzyme stability. Enzymes have great properties, although their marginal stability limits their applications. Among the strategies for improving stability of the enzymes, chemical modification is a simple and effective technique. In the present study, chemical modification of horseradish peroxidase (HRP) was carried out with 2,3-dichloromaleic anhydride and 2,3-dimethylmaleic anhydride. HRP is an important heme-containing enzyme. It is widely applied in pharmacological, chemical, and medical industries. Here, thermal stability of HRP was investigated at different temperatures. In addition, the enzyme stability was evaluated in urea, DMSO, alkaline pH, and hydrogen peroxide solutions by spectroscopic techniques. Structural investigation indicated that the both anhydrides slightly decrease compactness of the enzyme structure. The results also indicated that 2,3-dichloromaleic anhydride increases thermal stability of the enzyme and its stability in urea and DMSO solutions, but 2,3-dimethylmaleic anhydride only stabilizes HRP in urea solution. Furthermore, the experiments implied that none of the modifiers are effective on the stability of HRP in extreme pH and oxidative condition. Catalytic efficiency and activation energy did not change remarkably following reaction of the enzyme with the both carboxylic anhydrides. Consequently, improvement in the stability of HRP depends on not only the type of modifier but also denaturing condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Enzyme and Microbial Technology, 40, 1451–1463.

    Article  CAS  Google Scholar 

  2. Iyer, P. V., & Ananthanarayan, L. (2008). Process Biochemistry, 43, 1019–1032.

    Article  CAS  Google Scholar 

  3. Fagain, C. (2003). Enzyme and Microbial Technology, 33, 137–149.

    Article  CAS  Google Scholar 

  4. DeSantis, G., & Jones, J. B. (1999). Current Opinion in Biotechnology, 10, 324–330.

    Article  CAS  Google Scholar 

  5. Mozhaev, V. V., Melik-nubarov, N. S., Siksnis, V., & Martinek, K. (1990). Journal Biocatalysis and Biotransformation, 3, 189–196.

    Article  CAS  Google Scholar 

  6. Vinogradov, A. A., Kudryashova, E. K., Grinberg, V. Y., Grinberg, N. V., Burova, T. V., & Levashov, A. L. (2001). Protein Engineering, 14, 683–689.

    Article  CAS  Google Scholar 

  7. Xue, Y., Wu, C., Xue, Y., Wu, C. Y., Branford-White, C. J., Ning, X., et al. (2010). Journal of Molecular Catalysis B: Enzymatic, 63, 188–193.

    Article  CAS  Google Scholar 

  8. Fernandez, M., Fragoso, A., Cao, R., Banos, M., & Villalonga, R. (2002). Enzyme and Microbial Technology, 31, 543–548.

    Article  CAS  Google Scholar 

  9. Fernandez, M., Fragoso, A., Cao, R., Banos, M., Villalonga, M. L., & Villalonga, R. (2002). Biotechnology Letters, 24, 1455–1459.

    Article  CAS  Google Scholar 

  10. Veitch, N. C. (2004). Phytochemistry, 65, 249–259.

    Article  CAS  Google Scholar 

  11. Ngo, T. T. (2010). Analytical Letters, 43, 1572–1587.

    Article  CAS  Google Scholar 

  12. Hassani, L. (2012). Journal of Molecular Catalysis B: Enzymatic, 80, 15–19.

    Article  CAS  Google Scholar 

  13. Hassani, L. (2012). Applied Biochemistry and Biotechnology, 67, 489–497.

    Article  CAS  Google Scholar 

  14. Hassani, L., Ranjbar, B., Khajeh, K., Naderi-Manesh, H., Naderi-Manesh, M., & Sadeghi, M. (2006). Enzyme and Microbial Technology, 38, 118–125.

    Article  CAS  Google Scholar 

  15. Dixon, H. B., & Perham, R. N. (1968). Biochemical Journal, 109, 312–334.

    CAS  Google Scholar 

  16. Hermanson, G. (1996). Bioconjugate techniques. California: Academic.

    Google Scholar 

  17. Habeeb, A. F. S. A. (1966). Analytical Biochemistry, 14, 328–336.

    Article  CAS  Google Scholar 

  18. Bubnis, W., & Ofner, C. (1992). Analytical Biochemistry, 297, 129–133.

    Article  Google Scholar 

  19. Trinder, P. (1966). Annals of Clinical Biochemistry, 6, 24–25.

    Article  Google Scholar 

  20. Copland, R. A. (2002). Enzymes: a practical introduction to structure, mechanism, and data analysis. New York: Wiley.

    Google Scholar 

  21. Kelly, S. M., & Price, N. C. (2000). Current Protein & Peptide Science, 1, 349–384.

    Article  CAS  Google Scholar 

  22. Kelly, S. M., Jess, T. J., & Price, N. C. (2005). Biochimica et Biophysica Acta, 1751, 119–139.

    Article  CAS  Google Scholar 

  23. O’Brien, A. M., & Fagain, C. O. (1996). Biotechnology Techniques, 10, 905–910.

    Google Scholar 

  24. Campbell, L. D., & Dwek, R. A. (1984). Biological spectroscopy. California: The Benjamin Cummings Publishing Company.

    Google Scholar 

  25. Carvalho, A. S., Melo, E. P., Ferreira, B. S., Neves-Petersen, M. T., Petersen, S. B., & Aires-Barros, M. R. (2003). Archives of Biochemistry and Biophysics, 415, 257–267.

    Article  CAS  Google Scholar 

  26. Chattopadhyay, K., & Mazumdar, S. (2000). Biochemistry, 39, 263–270.

    Article  CAS  Google Scholar 

  27. Song, H. Y., Yao, J. H., Liu, J. Z., Zhou, S. J., Xiong, Y. H., & Ji, L. N. (2005). Enzyme and Microbial Technology, 36, 605–611.

    Article  CAS  Google Scholar 

  28. Welinder, K. G. (1979). European Journal of Biochemistry, 93, 483–502.

    Article  Google Scholar 

  29. Gajhede, M., Schuller, D. J., Henriksen, A., Smith, A. T., & Poulos, T. L. (1997). Nature Structural Biology, 4, 1032–1038.

    Article  CAS  Google Scholar 

  30. Mogharrab, N., Ghourchian, H., & Amininasab, M. (2007). Biophysical Journal, 92, 1192–1203.

    Article  CAS  Google Scholar 

  31. Mozhaev, V. V., Melik-Nubarov, N. S., Levitsky, V. Y., Siksins, V. A., & Martinek, K. (1992). Biotechnology and Bioengineering, 40, 650–662.

    Article  CAS  Google Scholar 

  32. He, Z., & Zhang, Z. (1999). Journal of Protein Chemistry, 18, 557–564.

    Article  CAS  Google Scholar 

  33. Mozhaev, V. V., Aiksnis, V. A., Melik-Nubarov, N. S., Galkantaite, N. Z., Denis, G. J., Butkus, E. P., et al. (1998). European Journal of Biochemistry, 173, 147–154.

    Article  Google Scholar 

  34. Ryan, O., Smyth, M. R., & Fagain, C. O. (1994). Enzyme and Microbial Technology, 16, 501–505.

    Article  CAS  Google Scholar 

  35. Dunford, H. B. (1991). In J. Everse, K. E. Everse, & M. B. Grisham (Eds.), Peroxidases in chemistry and biology, vol. 2: horseradish peroxidase: structure and kinetic properties (pp. 1–24). Boca Raton: CRC Press.

    Google Scholar 

  36. Mozhaev, V. V., Berezin, I. V., & Martinek, K. (1988). Reviews in Biochemistry and Molecular Biology, 23, 235–281.

    Article  CAS  Google Scholar 

  37. Wong, S. S., & Wong, L. (1992). Enzyme and Microbial Technology, 14, 866–874.

    Article  CAS  Google Scholar 

  38. Fishman, A., Levy, I., Cogan, U., Cogan, U., & Shoseyov, O. (2002). Journal of Molecular Catalysis B: Enzymatic, 18, 121–131.

    Article  CAS  Google Scholar 

  39. Nagano, S., Tanaka, M., Ishimori, K., Watanabe, Y., & Morishima, I. (1996). Biochemistry, 35, 14251–14258.

    Article  CAS  Google Scholar 

  40. Lane, S. M., Kuang, Z., Yom, J., Arifuzzaman, S., Genzer, J., Farmer, B., et al. (2011). Biomacromolecules, 12, 1822–1830.

    Article  CAS  Google Scholar 

  41. Malani, R. S., Khanna, S., & Moholkar, V. S. (2013). Journal of Hazardous Materials, 15, 256–257.

    Google Scholar 

  42. Ugarova, N. N., Rozhkova, G. D., & Berzin, I. V. (1979). Biochimica et Biophysica Acta, 570, 31–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by Research Council of Institute for Advanced Studies in Basic Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Hassani.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. 1S

Irreversible thermoinactivation of non-modified (Native), dichloromaleic anhydride (Cl) and dimethylmaleic anhydride (CH3) modified forms of HRP at 55 oC, pH 7.0 (DOCX 28 kb)

Fig. 2S

Irreversible thermoinactivation of non-modified (Native), dichloromaleic anhydride (Cl) and dimethylmaleic anhydride (CH3) modified forms of HRP at 65 oC, pH 7.0 (DOCX 29 kb)

Fig. 3S

Irreversible thermoinactivation of non-modified (Native), dichloromaleic anhydride (Cl) and dimethylmaleic anhydride (CH3) modified forms of HRP at 70 oC, pH 7.0 (DOCX 38 kb)

Fig. 4S

Irreversible thermoinactivation of non-modified (Native), dichloromaleic anhydride (Cl) and dimethylmaleic anhydride (CH3) modified forms of HRP at 75 oC, pH 7.0 (DOCX 30 kb)

Fig. 5S

Irreversible thermoinactivation of non-modified (Native), dichloromaleic anhydride (Cl) and dimethylmaleic anhydride (CH3) modified forms of HRP at 80 oC, pH 7.0 (DOCX 30 kb)

Fig. 6S

Remaining activity of non-modified (Native), dichloromaleic anhydride (Cl) and dimethylmaleic anhydride (CH3) modified forms of HRP at different concentration of H2O2 (DOCX 29 kb)

Fig. 7S

Remaining activity of non-modified (Native), dichloromaleic anhydride (Cl) and dimethylmaleic anhydride (CH3) modified forms of HRP at different pH (DOCX 30 kb)

Fig. 8S

Arrehnius plot for enzymatic activity of non-modified (Native), dichloromaleic anhydride (Cl) and dimethylmaleic anhydride (CH3) modified forms of HRP, pH 7.0 (DOCX 27 kb)

Fig. 9S

Linweaver-Burk plot for non-modified (Native), dichloromaleic anhydride (Cl) and dimethylmaleic anhydride (CH3) modified forms of HRP, pH 7.0 (DOCX 32 kb)

Fig. 10S

Far-UV circular dichroism spectra of non-modified (1), dichloromaleic anhydride (2) and dimethylmaleic anhydride (3) modified forms of HRP at room temperature and pH 7.0 (DOCX 30 kb)

Fig. 11S

Intrinsic fluorescence spectra of non-modified (1) dichloromaleic anhydride (2) and dimethylmaleic anhydride (3) modified forms of HRP excited at 280 nm (DOCX 21 kb)

Fig. 12S

Stern–Volmer plot of fluorescence quenching by acrylamide for non-modified (N), dichloromaleic anhydride (Cl) and dimethylmaleic anhydride (CH3) modified forms of HRP at room temperature and pH 7.0 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassani, L., Nourozi, R. Modification of Lysine Residues of Horseradish Peroxidase and Its Effect on Stability and Structure of the Enzyme. Appl Biochem Biotechnol 172, 3558–3569 (2014). https://doi.org/10.1007/s12010-014-0756-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0756-y

Keywords

Navigation