Skip to main content
Log in

Enhanced Fumaric Acid Production from Brewery Wastewater and Insight into the Morphology of Rhizopus oryzae 1526

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present work explores brewery wastewater as a novel substrate for fumaric acid production employing the filamentous fungal strain Rhizopus oryzae 1526 through submerged fermentation. The effects of different parameters such as substrate total solid concentrations, fermentation pH, incubation temperature, flask shaking speed, and inoculum size on the fungal morphologies were investigated. Different morphological forms (mycelium clumps, suspended mycelium, and solid/hairy pellets) of R. oryzae 1526 were obtained at different applied fermentation pH, incubation temperature, flask shaking speed, and inoculum size. Among all the obtained morphologies, pellet morphology was found to be the most favorable for enhanced production of fumaric acid for different studied parameters. Scanning electron microscopic investigation was done to reveal the detailed morphologies of the pellets formed under all optimized conditions. With all the optimized growth conditions (pH 6, 25 °C, 200 rpm, 5 % (v/v) inoculum size, 25 g/L total solid concentration, and pellet diameter of 0.465 ± 0.04 mm), the highest concentration of fumaric acid achieved was 31.3 ± 2.77 g/L. The results demonstrated that brewery wastewater could be used as a good substrate for the fungal strain R. oryzae 1526 in submerged fermentation for the production of fumaric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BW:

brewery wastewater

BDW:

biomass dry weight

SEM:

scanning electron microscope

FA:

fumaric acid

rpm:

revolution per minute

OD:

optical density

References

  1. Xu, Q., Liu, L., & Chen, J. (2012). Microbial Cell Factories, 11, 24.

    Article  CAS  Google Scholar 

  2. Yang, S. T., Zhang, K., Zhang, B., & Huang, H. (2011). Fumaric acid. In M. Bulter (Ed.), Moo-Young (pp. 163–167). The Netherlands: Comprehensive biotechnology.

    Google Scholar 

  3. Goldberg, I., Rokem, J. S., & Pines, O. (2006). Journal of Chemical Technology Biotechnology, 8, 1601–1611.

    Article  CAS  Google Scholar 

  4. Sauer, M., Porro, D., Mattanovich, D., & Branduardi, P. (2008). Trends in Biotechnology, 26, 101–108.

    Article  CAS  Google Scholar 

  5. Mrowietz, U., Christophers, E., & Altmeyep, R. (1999). British Journal of Dermatology, 141, 424–429.

    Article  CAS  Google Scholar 

  6. Information Head Services. Report on chemical insight and forecasting: IHS Chemical. April 2010.

  7. Beauchemin, K. A., & McGinn, S. M. (2006). Journal of Animal Science, 84, 1489–1496.

    CAS  Google Scholar 

  8. Temenoff, J. S., Kasper, F. K., & Mikos, A. G. (2007). Topics in tissue engineering. Ashammakhi, N., Reis, R., Chiellini, E (Eds). Fumarate-based macromers as scaffolds for tissue engineering applications (E-book).

  9. Xu, Q., Li, S., Fu, Y., Tai, C., & Huang, H. (2010). Bioresource Technology, 101, 6262–6264.

    Article  CAS  Google Scholar 

  10. Olajire, A. A. (2012). Journal of Cleaner Production. doi:10.1016/j.jclepro.2012.03.003.

    Google Scholar 

  11. European Commission. (2006). European Integrated Pollution Prevention and Control Bureau (EIPPCB) (Reference document on best available techniques (BAT) in the food, drink and milk industries). Seville: EIPPCB.

    Google Scholar 

  12. Brewers of Europe. (2002). Guidance note for establishing BAT in the brewing industry. Brussels: Brewers of Europe.

    Google Scholar 

  13. Zhou, Z., Du, G., Hua, Z., Zhou, J., & Chen, J. (2011). Bioresource Technology, 102, 9345–9349.

    Article  CAS  Google Scholar 

  14. Li, Z., Shukla, V., Fordyce, A., Pedersen, A., Wenger, K., & Marten, M. (2000). Biotechnology Bioengineering, 70, 300–312.

    Article  CAS  Google Scholar 

  15. Rodriguez Porcel, E., Casas Lopez, J., Sanchez Perez, J., Fernandez Sevilla, J., & Chisti, Y. (2005). Biochemical Engineering Journal, 26, 139–144.

    Article  CAS  Google Scholar 

  16. Dhillon, G. S., Brar, S. K., & Verma, M. (2012). International Journal of Food Science and Technology, 47, 542–548.

    Article  CAS  Google Scholar 

  17. Marshall, L. M., Orten, J. M., & Smith, A. H. (1949). Archives of Biochemistry, 24, 110–113.

    CAS  Google Scholar 

  18. Oda, Y., Yajima, Y., Kinoshita, M., & Ohnishi, M. (2003). Food Microbiology, 20, 371–375.

    Article  CAS  Google Scholar 

  19. Gangl, I. C., Weigand, W. A., & Keller, F. A. (1990). Appl Biochemistry Biotechnology, 24–25, 663–677

  20. Olander, A. (1929). Z. Physik. Chem. (Leipzig), Abt. A, 144, 49–72.

    Google Scholar 

  21. Meussen, B. J., de Graaff, L. H., Sanders, J. P. M., & Weusthuis, R. A. (2012). Applied Microbiology and Biotechnology, 94, 875–886.

    Article  CAS  Google Scholar 

  22. Cui, Y. Q., Okkerse, W. J., van der Lans, R. G. J. M., & Luyben, K. C. A. M. (1998). Biotechnology Bioengineering, 60, 216–229.

    Article  CAS  Google Scholar 

  23. Teng, Y., Xu, Y., & Wang, D. (2009). Bioprocess Biosystem Engineering, 32, 397–405.

    Article  CAS  Google Scholar 

  24. Cui, Y. Q., Van der Lans, R. G. J. M., & Luyben, K. C. A. M. (1997). Biotechnology Bioengineering, 55, 715–726.

    Article  CAS  Google Scholar 

  25. Braun, S., & Vecht-Lifshitz, S. E. (1991). Trends in Biotechnology, 9, 63–68.

    Article  Google Scholar 

  26. Schugerl, K., Gerlach, S. R., & Siedenberg, D. (1998). Advances in Biochemical Engineering and Biotechnology, 60, 195–266.

    CAS  Google Scholar 

  27. Papagianni, M. (2004). Biotechnol Advances, 22, 189–259.

    Article  CAS  Google Scholar 

  28. Nielsen, J., Johansen, C. L., Jacobsen, M., Krabben, P., & Villadsen, J. (1995). Biotechnology Progress, 11, 93–98.

    Article  CAS  Google Scholar 

  29. Yanagita, T., & Kogane, F. (1963). Journal of General and Applied Microbiology, 9, 171–187.

    Google Scholar 

  30. Vecht-Lifshitz, S. E., Magdassi, S., & Braun, S. (1989). Biotechnology Bioengineering, 35, 890–896.

    Article  Google Scholar 

Download references

Acknowledgement

Financial support of the Natural Sciences and Engineering Research Council of Canada (discovery grant 355254), MAPAQ (no. 809051), and Ministère des Relations Internationales du Québec (coopération Paraná-Québec 2010–2012) is sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satinder Kaur Brar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, R.K., Brar, S.K. Enhanced Fumaric Acid Production from Brewery Wastewater and Insight into the Morphology of Rhizopus oryzae 1526. Appl Biochem Biotechnol 172, 2974–2988 (2014). https://doi.org/10.1007/s12010-014-0739-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0739-z

Keywords

Navigation