Skip to main content
Log in

Fractionation of Protein Hydrolysates of Fish and Chicken Using Membrane Ultrafiltration: Investigation of Antioxidant Activity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, chicken and fish peptides were obtained using the proteolytic enzymes α-Chymotrypsin and Flavourzyme. The muscle was hydrolyzed for 4 h, and the resulting peptides were evaluated. Hydrolysates were produced from Argentine croaker (Umbrina canosai) with a degree of hydrolysis (DH) of 25.9 and 27.6 % and from chicken (Gallus domesticus) with DH of 17.8 and 20.6 % for Flavourzyme and α-Chymotrypsin, respectively. Membrane ultrafiltration was used to separate fish and chicken hydrolysates from Flavourzyme and α-Chymotrypsin based on molecular weight cutoff of >1,000, <1,000 and >500, and <500 Da, to produce fractions (F1,000, F1,000–500, and F500) with antioxidant activity. Fish hydrolysates produced with Flavourzyme (FHF) and α-Chymotrypsin showed 60.8 and 50.9 % of peptides with a molecular weight of <3 kDa in its composition, respectively. To chicken hydrolysates produced with Flavourzyme and α-Chymotrypsin (CHC) was observed 83 and 92.4 % of peptides with a molecular weight of <3 kDa. The fraction that showed, in general, higher antioxidant potential was F1,000 from FHF. When added 40 mg/mL of FHF and CHC, 93 and 80 % of lipid oxidation in ground beef homogenates was inhibited, respectively. The composition of amino acids indicated higher amino acids hydrophobic content and amino acids containing sulfuric residues for FHF, which showed antioxidant potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: a review. Peptides, 31, 1949–1956.

    Article  CAS  Google Scholar 

  2. Kim, E. K., Lee, S. J., Jeon, B. T., Moon, S. H., Kim, B., Park, T. K., Han, J. S., & Park, P. J. (2009). Purification and characterisation of antioxidative peptides from enzymatic hydrolysates of venison protein. Food Chemistry, 114, 1365–1370.

    Article  CAS  Google Scholar 

  3. Chan, K. M., & Decker, E. A. (1994). Endogenous skeletal muscle antioxidants. Critical Reviews in Food Science and Nutrition, 34, 403–426.

    Article  CAS  Google Scholar 

  4. Decker, E. A., Livisay, S. A., & Zhou, S. (2000). Mechanisms of endogenous skeletal muscle antioxidants: chemical and physical aspects. In E. A. Decker, C. Faustman, & C. J. Lopez-Bote (Eds.), Antioxidants in muscle foods (pp. 25–60). New York: Wiley.

    Google Scholar 

  5. Guiotto, A., Calderan, A., Ruzza, P., & Borin, G. (2005). Carnosine and carnosine-related antioxidants: a review. Current Medicinal Chemistry, 12, 2293–2315.

    Article  CAS  Google Scholar 

  6. Brown, C. E. (1981). Interactions among carnosine, anserine, ophidine and copper in biochemical adaptation. Journal of Theoretical Biology, 88, 245–256.

    Article  CAS  Google Scholar 

  7. Young, J. F., Therkildsen, M., Ekstrand, B., Che, B. N., Larsen, M. K., Oksbjerg, N., & Stagsted, J. (2013). Novel aspects of health promoting compounds in meat. Meat Science, 95, 904–911.

    Article  CAS  Google Scholar 

  8. Meisel, H., & Fitzgerald, R. J. (2003). Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Current Pharmaceutical Design, 9, 1289–1295.

    Article  CAS  Google Scholar 

  9. Sun, J., He, H., & Xie, B. J. (2004). Novel antioxidant peptides from fermented mushroom Ganoderma lucidum. Journal of Agricultural and Food Chemistry, 52, 6646–6652.

    Article  CAS  Google Scholar 

  10. Gauthier, S. F., Pouliot, Y., & Saint-Sauveur, D. (2006). Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. International Dairy Journal, 16, 1315–1323.

    Article  CAS  Google Scholar 

  11. McCann, K. B., Shiell, B. J., Michalski, W. P., Lee, A., Wan, J., Roginski, H., & Coventry, M. J. (2006). Isolation and characterization of a novel antibacterial peptide from bovine αS1-casein. International Dairy Journal, 16, 316–323.

    Article  CAS  Google Scholar 

  12. Shimizu, M., Sawashita, N., Morimatsu, F., Ichikawa, J., Taguchi, Y., Ijiri, Y., et al. (2008). Antithrombotic papain-hydrolyzed peptides isolated from pork meat. Thrombosis Research, 123, 753–757.

    Article  CAS  Google Scholar 

  13. Zhong, F., Liu, J., Ma, J., & Shoemaker, C. F. (2007). Preparation of hypocholesterol peptides from soy protein and their hypocholesterolemic effect in mice. Food Research International, 40, 661–667.

    Article  CAS  Google Scholar 

  14. Jia, J., Maa, H., Zhao, W., Wang, Z., Tian, W., Luo, L., & He, R. (2010). The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chemistry, 119, 336–342.

    Article  CAS  Google Scholar 

  15. Mendis, E., Rajapakse, N., & Kim, S. K. (2005). Antioxidant properties of radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. Journal of Agricultural and Food Chemistry, 53, 581–587.

    Article  CAS  Google Scholar 

  16. Wu, H. C., Pan, B. S., Chang, C. L., & Shiau, C. Y. (2005). Low-molecular-weight peptides as related to antioxidant properties of chicken essence. Journal of Food and Drug Analysis, 13, 176–183.

    CAS  Google Scholar 

  17. Je, J. Y., Lee, K. H., Lee, M. H., & Ahn, C. B. (2009). Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Research International, 42, 1266–1272.

    Article  CAS  Google Scholar 

  18. Aewsiri, T., Benjakul, S., Visessanguan, W., Wierenga, P. A., & Gruppen, H. (2010). Antioxidative activity and emulsifying properties of cuttlefish skin gelatin–tannic acid complex as influenced by types of interaction. Innovative Food Science and Emerging Technologies, 11, 712–720.

    Article  CAS  Google Scholar 

  19. Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., & Nasri, M. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry, 118, 559–565.

    Article  CAS  Google Scholar 

  20. Centenaro, G. S., Mellado, M. S., & Prentice-Hernández, C. (2011). Antioxidant activity of protein hydrolysates of fish and chicken bones. Advance Journal of Food Science and Technology, 3, 280–288.

    CAS  Google Scholar 

  21. Guérard, F., Sellos, D., & Le Gal, Y. (2005). Fish and shellfish upgrading, traceability. Advances in Biochemical Engineering/Biotechnology, 96, 127–163.

    Article  CAS  Google Scholar 

  22. Gulcin, I., Buyukokuroglu, M. E., Oktay, M., & Kufrevioglu, O. I. (2003). Antioxidant and analgesic activities of turpentine of Pinus nigra Arn. subsp. Pallsiana (Lamb). Holmboe. Journal of Ethnopharmacology, 86, 51–58.

    Article  Google Scholar 

  23. Ekanayake, P., Lee, Y. D., & Lee, J. (2004). Antioxidant activity of flesh and skin of Eptatretus burgeri (Hag Fish) and Enedrias nebulosus (White spotted Eel). Food Science and Technology International, 10, 0171–0177.

    Article  Google Scholar 

  24. Shih, F. F., & Daigle, K. W. (2003). Antioxidant properties of milled-rice co-products and their effects on lipid oxidation in ground beef. Journal of Food Science, 68, 2672–2675.

    Article  CAS  Google Scholar 

  25. Maillard, M.-N., Soum, M.-H., Boivin, P., & Berset, C. (1996). Antioxidant activity of barley and malt: relationship with phenolic content. LWT-Food Science and Technology, 29, 238–244.

    Article  CAS  Google Scholar 

  26. Park, P. J., Jung, W. K., Nam, K. S., Shahidi, F., & Kim, S. K. (2001). Purification and characterization of antioxidative peptides from protein hydrolysate of lecithin-free egg yolk. Journal of the American Oil Chemists Society, 78, 651–656.

    Article  CAS  Google Scholar 

  27. Qian, Z.-J., Jung, W.-K., & Kim, S.-K. (2008). Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. Bioresource Technology, 99, 1690–1698.

    Article  CAS  Google Scholar 

  28. Foh, M. B. K., Qixing, J., Amadou, I., & Xia, W. S. (2010). Influence of ultrafiltration on antioxidant activity of tilapia (Oreochromis niloticus) protein hydrolysate. Advance Journal of Food Science and Technology, 2, 227–235.

    CAS  Google Scholar 

  29. Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food Chemistry, 27, 1256–1262.

    Article  CAS  Google Scholar 

  30. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  31. Pires, C., Batista, I., Godinho, V., & Nunes, M. L. (2008). Functional and biochemical characterization of proteins remaining in solution after isoelectric precipitation. Journal of Aquatic Food Product Technology, 17, 60–72.

    Article  CAS  Google Scholar 

  32. Chung, S. K., Osawa, T., & Kawakishi, S. (1997). Hydroxyl radical scavenging effect of spices and scavengers from Brown Mustard (Brassica nigra). Bioscience, Biotechnology, and Biochemistry, 61, 118–124.

    Article  CAS  Google Scholar 

  33. Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural Food and Chemistry, 40(6), 945–948.

    Article  CAS  Google Scholar 

  34. Re, R., Pellegrini, N., Proteggente, A., Panala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radicals Biology and Medicine, 26, 1231–1237.

    Article  CAS  Google Scholar 

  35. Oyaizu, M. (1988). Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi, 35, 771–775.

    Article  CAS  Google Scholar 

  36. Sakanaka, S., Tachibana, Y., Ishihara, N., & Juneja, L. R. (2005). Antioxidant properties of casein calcium peptides and their effects on lipid oxidation in beef homogenates. Journal of Agricultural and Food Chemistry, 53, 464–468.

    Article  CAS  Google Scholar 

  37. Spackman, D. H., Stein, W. H., & Moore, S. (1958). Automatic recording apparatus for use in the chromatography of amino acids. Analytical Chemistry, 30, 1190–1206.

    Article  CAS  Google Scholar 

  38. Souissi, N., Bougatef, A., Triki-Ellouz, Y., & Nasri, M. (2007). Biochemical and functional properties of sardinella (Sardinella aurita) by-product hydrolysates. Food Technology and Biotechnology, 45, 187–194.

    CAS  Google Scholar 

  39. Kristinsson, H. G., & Rasco, B. A. (2000). Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle hydrolyzed with various alkaline proteases. Journal of Agriculture and Food Chemistry, 48, 657–666.

    Article  CAS  Google Scholar 

  40. Guérard, F., Dufosse, L., De La Broise, D., & Binet, A. (2001). Enzymatic properties of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase. Journal of Molecular Catalysis B: Enzymatic, 11, 1051–1059.

    Article  Google Scholar 

  41. Kurozawa, L. E., Park, K. J., & Hubinger, M. D. (2009). Influência das condições de processo na cinética de hidrólise enzimática de carne de frango. Ciência e Tecnologia de Alimentos, 29, 557–566.

    Article  Google Scholar 

  42. Rebeca, B. D., Pena-Vera, M. T., & Diaz-Castaneda, M. (1991). Production of fish protein hydrolysates with bacterial proteases, yield and nutritional value. Journal of Food Science, 56, 309–314.

    Article  CAS  Google Scholar 

  43. Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 102, 1317–1327.

    Article  CAS  Google Scholar 

  44. Rossini, K., Noreña, C. P. Z., Cladera-Olivera, F., & Brandelli, A. (2009). Casein peptides with inhibitory activity on lipid oxidation in beef homogenates and mechanically deboned poultry meat. LWT-Food Science and Technology, 42, 862–867.

    Article  CAS  Google Scholar 

  45. Kristinsson, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: production, biochemical and functional properties. Critical Reviews in Food Science and Nutrition, 40(1), 43–81.

    Article  CAS  Google Scholar 

  46. Jeon, Y. J., Byun, H. G., & Kim, S. K. (1999). Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochemistry, 35, 471–478.

    Article  Google Scholar 

  47. Picot, L., Ravallec, R., Fouchereau-Péron, M., Vandanjon, L., Jaouen, P., Chaplain-Derouiniot, M., et al. (2010). Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties. Journal of the Science of Food and Agriculture, 90, 1819–1826.

    CAS  Google Scholar 

  48. Ren, J., Zhao, M., Shi, J., Wang, J., Jiang, Y., Cui, C., et al. (2008). Optimization of antioxidant peptide production from grass carp sarcoplasmic protein using response surface methodology. LWT-Food Science and Technology, 41, 1624–1632.

    Article  CAS  Google Scholar 

  49. Chabeaud, A., Dutournié, P., Guérard, F., Vandanjon, L., & Bourseau, P. (2009). Application of response surface methodology to optimise the antioxidant activity of a saithe (Pollachius virens) hydrolysate. Marine Biotechnology, 11, 445–455.

    Article  CAS  Google Scholar 

  50. Frankel, E. N., & Meyer, A. S. (2000). The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. Journal of the Science of Food and Agriculture, 80, 1925–1941.

    Article  CAS  Google Scholar 

  51. Je, J. Y., Qian, Z.-J., Byun, H.-G., & Kim, S.-K. (2007). Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry, 42, 840–846.

    Article  CAS  Google Scholar 

  52. Miliauskas, G., Venskutonisa, P. R., & Van Beekb, T. A. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry, 85, 231–237.

    Article  CAS  Google Scholar 

  53. Phanturat, P., Benjakul, S., Visessanguan, W., & Roytrakul, S. (2010). Use of pyloric caeca extract from bigeye snapper (Priacanthus macracanthus) for the production of gelatin hydrolysate with antioxidative activity. LWT - Food Science and Technology, 43, 86–97.

    Article  CAS  Google Scholar 

  54. Kong, B. H., & Xiong, Y. L. (2006). Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action. Journal of Agricultural and Food Chemistry, 54, 6059–6068.

    Article  CAS  Google Scholar 

  55. Kitts, D. D. (2005). Antioxidant properties of caseinphosphopeptides. Trends in Food Science and Technology, 16, 549–554.

    Article  CAS  Google Scholar 

  56. Wu, H. C., Chen, H. M., & Shiau, C. Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36, 949–957.

    Article  CAS  Google Scholar 

  57. Je, J. Y., Kim, S.-Y., & Kim, S.-K. (2005). Preparation and antioxidative activity of hoki frame protein hydrolysate using ultrafiltration membranes. European Food Research Technology, 221, 157–162.

    Article  CAS  Google Scholar 

  58. Pihlanto, A. (2006). Antioxidative peptides derived from milk proteins. International Dairy Journal, 16, 1306–1314.

    Article  CAS  Google Scholar 

  59. Lee, B. J., & Hendricks, D. G. (1997). Antioxidant effects of l-carnosine on liposomes and beef homogenates. Journal Food Science, 62, 931–934.

    Article  CAS  Google Scholar 

  60. Rajapakse, N., Mendis, E., Byun, H. G., & Kim, S. K. (2005). Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. Journal of Nutritional Biochemistry, 16, 562–569.

    Article  CAS  Google Scholar 

  61. Je, J. Y., Park, P. J., & Kim, S. K. (2005). Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Research International, 38, 45–50.

    Article  CAS  Google Scholar 

  62. Dong, S., Zeng, M., Wang, D., Liu, Z., Zhao, Y., & Yang, H. (2008). Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chemistry, 107, 1485–1493.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CAPES of Brazil through a scholarship granted to the first author by PhD Program in Brazil with the Foreign Internship-PDEE (Process BEX: 0076/10-4) and developed at the Fisheries and Marine Research Institute (IPMA, I. P./DMRM) in Lisbon, Portugal. The authors also thank support from the European Project Chill-On (FP 6-409 016333-2) and CNPq of Brazil (Grant 305055/2006-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Prentice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Centenaro, G.S., Salas-Mellado, M., Pires, C. et al. Fractionation of Protein Hydrolysates of Fish and Chicken Using Membrane Ultrafiltration: Investigation of Antioxidant Activity. Appl Biochem Biotechnol 172, 2877–2893 (2014). https://doi.org/10.1007/s12010-014-0732-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0732-6

Keywords

Navigation