Skip to main content
Log in

Mineral Composition of Seawater Bittern Nigari Products and Their Effects on Changing of Browning and Antioxidant Activity in the Glucose/Lysine Maillard Reaction

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Seawater bittern (nigari) is a concentrated solution remaining after the crystallization process of salt that has been used as a coagulant for tofu. Recently, various nigari products are distributed in the East Asia. To clarify the properties of nigari products, major mineral composition of six nigari products was determined. Then, effects of the nigari on the browning and antioxidant activity during the glucose/lysine Maillard reaction were investigated. Though the predominant cation was Mg2+, the content was varied by each product (0.88–6.49 mol/L). The other major ion contents were also varied. Each 0.5 mol/L of d-glucose and l-lysine were incubated with the nigari (5–50 % (v/v)) or nigari-related salts (1 or 2 mol/L). The browning (OD at 465 nm) and antioxidant activity (1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacity and ferrous-reducing power) were increased remarkably by the nigari containing high Mg2+ content. The browning tended to be high with sulfates (Na2SO4, (NH4)2SO4). On the other hand, high content of MgCl2 decreased slightly the browning and antioxidant activity. These results suggest that the reaction and antioxidant activities were affected not only by salinity and cations but also by anions and other elements in the nigari.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ayoub, G. M., Merhebi, F., Acra, A., El-Fadei, M., & Koopman, B. (2000). Water Research, 34, 640–656.

    Article  CAS  Google Scholar 

  2. Lychnos, G., Fletcher, J. P., & Davies, P. A. (2010). Desalination, 250, 172–178.

    Article  CAS  Google Scholar 

  3. Tsai, S. J., Lan, C. Y., Kao, C. S., & Chen, S. C. (1981). Studies on the yield and quality characteristics of tofu. Journal of Food Science, 46, 1734–1737.

    Article  CAS  Google Scholar 

  4. Haga, M., Niino, Y., Nishimura, H., & Seki, Y. (2005). Journal of Cookery Science of Japan, 38, 281–285.

    Google Scholar 

  5. Yokota, K., Kato, M., Lister, F., Ii, H., Hayakawa, T., Kikuta, T., Kageyama, S., & Tajima, N. (2004). Journal of the American College of Nutrition, 23, 506S–509S.

    Article  CAS  Google Scholar 

  6. Venskutonis, R. P., Vasillauskalit, R., Galdikas, A., & Setkus, S. (2002). Food Control, 13, 13–21.

    Article  CAS  Google Scholar 

  7. Wang, H. Y., Qian, H., & Yao, W. R. (2011). Food Chemistry, 128, 573–584.

    Article  CAS  Google Scholar 

  8. Kuda, T., Hishi, T., & Maekawa, S. (2006). Food Chemistry, 98, 545–550.

    Article  CAS  Google Scholar 

  9. Kuda, T., & Yano, T. (2009). LWT--Food Science and Technology, 42, 1070–1075.

    Article  CAS  Google Scholar 

  10. Tuohy, K. M., Hinton, D. J. S., Davis, S. J., Crabbe, M. J. C., Gibson, G. R., & Ames, J. M. (2006). Molecular Nutrition & Food Research, 50, 847–857.

    Article  CAS  Google Scholar 

  11. Kataoka, S. (2005). Journal of Bioscience and Bioengineering, 100, 227–234.

    Article  CAS  Google Scholar 

  12. Kwak, E. J., & Lim, S. I. (2004). Amino Acid, 27, 85–90.

    Article  CAS  Google Scholar 

  13. Matiacevich, S. M., Santagapita, P. R., & del Pilar-Buera, M. (2010). Food Chemistry, 118, 103–108.

    Article  CAS  Google Scholar 

  14. Dwyer, J., Strrenburg, D., Tait, S., Barr, K., Batstone, D. J., & Lant, P. (2008). Water Research, 42, 4699–4709.

    Article  CAS  Google Scholar 

  15. Yan, P. (2011). Experimental Gerontology, 46, 847–852.

    Article  CAS  Google Scholar 

  16. Schöneich, C. (2005). BBA-Proteins and Proteomics, 1703, 111–119.

    Article  CAS  Google Scholar 

  17. Fukai, M. U., & Nakamura, Y. (2008). Cancer Letter, 266, 37–52.

    Article  CAS  Google Scholar 

  18. Kuda, T., Kunii, T., Goto, H., Suzuki, T., & Yano, T. (2007). Food Chemistry, 103, 900–905.

    Article  CAS  Google Scholar 

  19. Kuda, T., & Ikemori, T. (2009). Food Chemistry, 112, 575–581.

    Article  CAS  Google Scholar 

  20. Blois, M. S. (1958). Nature, 26, 1199–1200.

    Article  Google Scholar 

  21. Zhu, Q. T., Hackman, R., Ensunsa, J. L., Holt, R. R., & Keen, C. L. (2002). Journal of Agricultural and Food Chemistry, 50, 6929–6934.

    Article  CAS  Google Scholar 

  22. Gokmen, V., & Senyuva, H. (2007). Food Chemistry, 103, 196–203.

    Article  CAS  Google Scholar 

  23. Ogimoto, M., Uematsu, Y., Kabashima, J., Suzuki, K., & Ito, K. (2006). Shokuhin Eiseigaku Zasshi, 47, 296–301.

    Article  CAS  Google Scholar 

  24. Kanno, T., Kuda, T., An, C., Takahashi, H., & Kimura, B. (2012). LWT--Food Science and Technology, 47, 25–30.

    Article  CAS  Google Scholar 

  25. Alves-Silva, J. M., dos Santos, S. M., Pintado, M. E., Perez-Alverez, J. A., Fernandez-Lopez, J., & Viuda-Martos, M. (2013). Food Control, 32, 371–378.

    Article  CAS  Google Scholar 

  26. Kuda, T., Nakamura, S., An, C., Takahashi, H., Kimura, B., & Nishizawa, M. (2012). Applied Biochemistry and Biotechnology, 168, 928–935.

    Article  CAS  Google Scholar 

  27. Yen, G. G., & Chen, H. Y. (1995). Journal of Agricultural and Food Chemistry, 43, 27–32.

    Article  CAS  Google Scholar 

  28. DeGraft-Johnson, J., Kolodziejczyk, K., Krol, M., Nowak, P., Krol, B., & Nowak, D. (2007). Basic & Clinical Pharmacology & Toxicology, 100, 345–352.

    Article  CAS  Google Scholar 

  29. Kuda, T., Tsunekawa, M., Hishi, T., & Araki, Y. (2005). Food Chemistry, 89, 617–622.

    Article  CAS  Google Scholar 

  30. Moreles, F. J., & Jiménez-Pérez, S. (2001). Food Chemistry, 72, 119–125.

    Article  Google Scholar 

  31. Rizzi, G. P. (2004). Journal of Agricultural and Food Chemistry, 52, 953–995.

    Article  CAS  Google Scholar 

  32. Sumaya-Martinez, M. T., Thomas, S., Linard, B., Binet, A., & Guerard, F. (2005). Food Research International, 38, 1045–1050.

    Article  CAS  Google Scholar 

  33. Bell, L. N. (1997). Food Chemistry, 59, 143–147.

    Article  CAS  Google Scholar 

  34. Hu, H., Chen, W., Shi, Y., & Cong, W. (2006). Marine Pollution Bulletin, 52, 756–760.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Salt Science Research Foundation (Grant No. 0740), Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuda, T., Yano, T. Mineral Composition of Seawater Bittern Nigari Products and Their Effects on Changing of Browning and Antioxidant Activity in the Glucose/Lysine Maillard Reaction. Appl Biochem Biotechnol 172, 2989–2997 (2014). https://doi.org/10.1007/s12010-013-0722-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0722-0

Keywords

Navigation