Skip to main content
Log in

Phylogenetic Analysis of Putative Genes Involved in the Tryptophan-Dependent Pathway of Auxin Biosynthesis in Rice

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Plant proteome databases were mined for a flavin monooxygenase (YUCCA), tryptophan decarboxylase (TDC), nitrilase (NIT), and aldehyde oxidase (AO) enzymes that could be involved in the tryptophan-dependent pathway of auxin biosynthesis. Phylogenetic trees for enzyme sequences obtained were constructed. The YUCCA and TDC trees showed that these enzymes were conserved across the plant kingdom and therefore could be involved in auxin synthesis. YUCCAs branched into two clades. Most experimentally studied YUCCAs were found in the first clade. The second clade which has representatives from only seed plants contained Arabidopsis sequences linked to embryonic development. Therefore, sequences in this clade were suggested to be evolved with seed development. Examination of TDC activity and expression had previously linked this enzyme to secondary products synthesis. However, the phylogenetic finding of a conserved TDC clade across land plants suggested its essential role in plant growth. Phylogenetic analysis of AOs showed that plants inherited one AO. Recent gene duplication was suggested as AO sequences from each species were similar to each other rather than to AO from other species. Taken together and based on the experimental support of the involvement of AO in abscisic synthesis, AO was excluded as an intermediate in IAA production. Phylogenetic tree for NIT showed that the first clade contained sequences from species across the plant kingdom whereas the second branch contained sequences from only Brassicaceae. Even though NIT4 orthologues were conserved in the second clade, their major role seems to be detoxification of hydrogen cyanide rather than producing IAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stepanova, A., et al. (2008). Cell, 133(1), 177–191.

    Article  CAS  Google Scholar 

  2. Tao, Y., et al. (2008). Cell, 133(1), 164–176.

    Article  CAS  Google Scholar 

  3. Yamada, M., et al. (2009). Plant Physiology, 151, 168–179.

    Article  CAS  Google Scholar 

  4. Nafisi, M., et al. (2007). Plant Cell, 19(6), 2039–2052.

    Article  CAS  Google Scholar 

  5. Normanly, J., et al. (1997). Plant Cell, 9(10), 1781–1790.

    Article  CAS  Google Scholar 

  6. Bak, S., et al. (2001). Plant Cell, 13(1), 101–111.

    Article  CAS  Google Scholar 

  7. Noe, W., Mollenschott, C., & Berlin, J. (1984). Plant Molecular Biology, 3(5), 281–288.

    Article  CAS  Google Scholar 

  8. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  Google Scholar 

  9. Fitch, W. M. (1981). Journal of Molecular Evolution, 18(1), 30–37.

    Article  CAS  Google Scholar 

  10. Fitch, W. M. (1971). Systematic Zoology, 20, 406–416.

    Article  Google Scholar 

  11. Felsenstein, J. (1981). Journal of Molecular Evolution, 17(6), 368–376.

    Article  CAS  Google Scholar 

  12. Dayhoff, M. O. (1978), in A model of evolutionary change in proteins, vol. 5: Atlas of Protein Sequence and Structure (Dayhoff, M.O., ed.), Washington, D.C., pp 345–352.

  13. Kimura, M. (1983) The neutral theory of molecular evolution, Cambridge, pp 50–56.

  14. George, D. G., Hunt, L. T., & Barker, W. C. (1988), in Current methods in sequence comparison and analysi, vol. 2: Macromolecular Sequencing and Synthesis (Schlesinger, D.H. and Liss, A.R., ed.), New York, pp 127–149.

  15. Felsenstein, J. (1989). Cladistics, 5, 164–166.

    Google Scholar 

  16. Zhao, Y. D., et al. (2001). Science, 291(5502), 306–309.

    Article  CAS  Google Scholar 

  17. Exposito-Rodriguez, M., et al. (2007). Journal of Plant Growth Regulation, 26(4), 329–340.

    Article  CAS  Google Scholar 

  18. Gallavotti, A., et al. (2008). Proceedings of the National Academy of Sciences of the United States of America, 105(39), 15196–15201.

    Article  Google Scholar 

  19. Tobena-Santamaria, R., et al. (2002). Genetics Development, 16(6), 753–763.

    Article  CAS  Google Scholar 

  20. Yamamoto, Y., et al. (2007). Plant Physiology, 143, 1362–1371.

    Article  CAS  Google Scholar 

  21. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  22. Yamazaki, Y., et al. (2003). Plant & Cell Physiology, 44(4), 395–403.

    Article  CAS  Google Scholar 

  23. LopezMeyer, M., & Nessler, C. L. (1997). Plant Journal, 11(6), 1167–1175.

    Article  CAS  Google Scholar 

  24. De Luca, V., Marineau, C., & Brisson, N. (1989). Proceedings of the National Academy of Sciences of the United States of America, 86(8), 2582–2586.

    Article  Google Scholar 

  25. Seo, M., et al. (2000). Plant Journal, 23(4), 481–488.

    Article  CAS  Google Scholar 

  26. Rajagopal, R. (1971). Physiology Plantarum, 24, 272–281.

    Article  CAS  Google Scholar 

  27. Bower, P. J., Brown, H. M., & Purves, W. K. (1978). Plant Physiology, 61(1), 107–110.

    Article  CAS  Google Scholar 

  28. Koshiba, T., et al. (1996). Plant Physiology, 110(3), 781–789.

    CAS  Google Scholar 

  29. Park, W. J., et al. (2003). Plant Physiology, 133(2), 794–802.

    Article  CAS  Google Scholar 

  30. ANGIS/BioManager. 2009, The University of Sydney.

  31. Page, R. D. M. (1996). Computer Applications in the Biosciences, 12, 357–358.

    CAS  Google Scholar 

  32. Woo, Y. M., et al. (2007). Plant Molecular Biology, 65(1–2), 125–136.

    Article  CAS  Google Scholar 

  33. Kaminaga, Y., et al. (2006). Journal of Biological Chemistry, 281(33), 23357–23366.

    Article  CAS  Google Scholar 

  34. Kawalleck, P., et al. (1993). Journal of Biological Chemistry, 268(3), 2189–2194.

    CAS  Google Scholar 

  35. Cheng, Y. F., Dai, X. H., & Zhao, Y. D. (2006). Genetics Development, 20(13), 1790–1799.

    Article  CAS  Google Scholar 

  36. Cheng, Y. F., Dai, X. H., & Zhao, Y. D. (2007). Plant Cell, 19(8), 2430–2439.

    Article  CAS  Google Scholar 

  37. Kang, S., et al. (2008). Planta, 227(1), 263–272.

    Article  CAS  Google Scholar 

  38. Facchini, P. J., & De Luca, V. (1995). Phytochemistry, 38(5), 1119–1126.

    Article  CAS  Google Scholar 

  39. Marques, I. A., & Brodelius, P. E. (1988). Plant Physiology, 88(1), 52–55.

    Article  CAS  Google Scholar 

  40. Islas, I., Loyolavargas, V. M., & Mirandaham, M. D. (1994). In Vitro Cell Dev-Pl, 30(1), 81–83.

    Article  Google Scholar 

  41. Songstad, D. D., et al. (1990). Plant Physiology, 94(3), 1410–1413.

    Article  CAS  Google Scholar 

  42. Zdunek-Zastocka, E., et al. (2004). Journal of Experimental Botany, 55(401), 1361–1369.

    Article  CAS  Google Scholar 

  43. Gonzalez-Guzman, M., et al. (2004). Plant Physiology, 135(1), 325–333.

    Article  CAS  Google Scholar 

  44. Seo, M., et al. (2000). Proceedings of the National Academy of Sciences of the United States of America, 97(23), 12908–12913.

    Article  CAS  Google Scholar 

  45. Vorwerk, S., et al. (2001). Planta, 212(4), 508–516.

    Article  CAS  Google Scholar 

  46. Bartel, B., & Fink, G. (1994). Proceedings of the National Academy of Sciences, 91(14), 6649–6653.

    Article  CAS  Google Scholar 

  47. Bartling, D., et al. (1994). Proceedings of the National Academy of Sciences, 91(13), 6021–6025.

    Article  CAS  Google Scholar 

  48. Wittstock, U., & Halkier, B. (2002). Trends in Plant Science, 7(6), 263–270.

    Article  CAS  Google Scholar 

  49. Piotrowski, M., Schonfelder, S., & Weiler, E. W. (2001). Journal of Biological Chemistry, 276(4), 2616–2621.

    Article  CAS  Google Scholar 

  50. Jenrich, R., et al. (2007). Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18848–18853.

    Article  Google Scholar 

  51. Kriechbaumer, V., et al. (2007). Journal of Experimental Botany, 58(15–16), 4225–4233.

    Article  CAS  Google Scholar 

  52. Pollmann, S., Düchting, P., & Weiler, E. (2009). Phytochemistry, 70(4), 523–531.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef M. Abu-Zaitoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abu-Zaitoon, Y.M. Phylogenetic Analysis of Putative Genes Involved in the Tryptophan-Dependent Pathway of Auxin Biosynthesis in Rice. Appl Biochem Biotechnol 172, 2480–2495 (2014). https://doi.org/10.1007/s12010-013-0710-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0710-4

Keywords

Navigation