Skip to main content
Log in

Essential Role of Gly33 in a Novel Organic Solvent-Tolerant Lipase from Serratia marcescens ECU1010 as Determined by Site-Directed Mutagenesis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel lipase lipB from Serratia marcescens ECU1010 is highly stable in the presence of organic solvents. By sequence and structure comparison with homologous lipase lipA, three amino acid residues were found to be different between them. To identify the residues which increase the organic solvent stability of lipB, residues that potentially provide this stability were mutated to the ones of lipA at equivalent positions. The replacement of Gly at position 33 by Asp obviously decreased its stability in organic solvents. Molecular modeling and structural analysis also suggested that the Gly33 residue is important for the organic solvent stability of lipB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reetz, M. T. (2002). Current Opinion in Chemical Biology, 6, 145–150.

    Article  CAS  Google Scholar 

  2. Jaeger, K. E., & Eggert, T. (2002). Current Opinion in Biotechnology, 13, 390–397.

    Article  CAS  Google Scholar 

  3. Bornscheuer, U. T., & Kazlauskas, R. J. (1999). Hydrolases in organic synthesis: regio- and stereoselective biotransformations. Weinheim: Wiley-VCH.

    Google Scholar 

  4. Lee, M. Y., & Dordick, J. S. (2002). Current Opinion in Biotechnology, 13, 376–384.

    Article  CAS  Google Scholar 

  5. Meie, R., Drepper, T., Svensson, V., Jaeger, K. E., & Baumann, U. (2007). Journal of Biological Chemistry, 282, 31477–31483.

    Article  CAS  Google Scholar 

  6. Hyun-Ju, K., Amada, K., Haruki, M., Morikawa, M., & Kanaya, S. (2000). FEBS Letters, 483, 139–142.

    Article  CAS  Google Scholar 

  7. Zhao, L. L., Xu, J. H., Zhao, J., Pan, J., & Wang, Z. L. (2008). Process Biochemistry, 43, 626–633.

    Article  CAS  Google Scholar 

  8. Ogino, H., Uchiho, T., Doukyu, N., Yasuda, M., Ishimi, K., & Ishikawa, H. (2007). Biochemical and Biophysical Research Communications, 358, 1028–1033.

    Article  CAS  Google Scholar 

  9. Cygler, M., Schrag, J. D., Sussman, J. L., Harel, M., & Silman, I. (1993). Protein Science, 2, 366–382.

    Article  CAS  Google Scholar 

  10. Lotti, M., Tramontano, A., Longhi, S., Fusetti, F., & Brocca, S. (1994). Protein Engineering, 7, 531–535.

    Article  CAS  Google Scholar 

  11. Kazlauskas, R. J. (2000). Current Opinion in Chemical Biology, 4, 81–88.

    Article  CAS  Google Scholar 

  12. Long, Z. D., Xu, J. H., Zhao, L. L., & Pan, J. (2007). Journal of Molecular Catalysis B: Enzymatic, 47, 105–110.

    Article  CAS  Google Scholar 

  13. Akatsuka, H., Kawai, E., Omori, K., Komatsubara, S., Shibatani, T., & Tosa, T. (1994). Journal of Bacteriology, 176, 1949–1956.

    CAS  Google Scholar 

  14. Amada, K., Haruki, M., Imanaka, T., Morikawa, M., & Kanaya, S. (2000). Biochimica et Biophysica Acta, 1478, 201–210.

    Article  CAS  Google Scholar 

  15. Hazarika, S., Goswami, P., Dutta, N. N., & Hazarika, A. K. (2002). Chemical Engineering Journal, 85, 61–68.

    Article  CAS  Google Scholar 

  16. Tanford, C. (1961). Physical chemistry of macromolecules. New York: Wiley.

    Google Scholar 

  17. Singer, S. J. (1962). Advances in Protein Chemistry, 17, 1–68.

    Article  CAS  Google Scholar 

  18. Careri, G. (1998). Progress in Biophysics and Molecular Biology, 70, 223–249.

    Article  CAS  Google Scholar 

  19. Serdakowski, A. L., & Dordick, J. S. (2008). Trends in Biotechnology, 26, 48–54.

    Article  CAS  Google Scholar 

  20. Klibanov, A. M. (1997). Trends in Biotechnology, 15, 97–101.

    Article  CAS  Google Scholar 

  21. Lima, V. M. G., Krieger, N., Mitchell, D. A., & Fontana, J. D. (2004). Biochemical Engineering Journal, 18, 65–71.

    Article  CAS  Google Scholar 

  22. Martinez, P., Van Dam, M. E., Robinson, A. C., Chen, K., & Arnold, F. H. (1992). Biotechnology and Bioengineering, 39, 141–147.

    Article  CAS  Google Scholar 

  23. Arnold, F. H. (1988). Protein Engineering, 2, 21–25.

    Article  CAS  Google Scholar 

  24. Arnold, F. H. (1990). Trends in Biotechnology, 8, 244–249.

    Article  CAS  Google Scholar 

  25. Pleiss, J., Fischer, M., & Schmid, R. D. (1998). Chemistry and Physics of Lipids, 93, 67–70.

    Article  CAS  Google Scholar 

  26. Luque, I., & Freire, E. (2000). Proteins, Suppl. 4, 63–71.

    Article  Google Scholar 

  27. Higuchi, R. (1992). Using PCR to engineer DNA in PCR technology: principles and applications for DNA amplification (pp. 61–70). New York: Stockton.

    Google Scholar 

  28. Matsumae, H., Furui, M., Shibatani, T., & Tosa, T. (1994). Journal of Fermentation and Bioengineering, 78, 59–63.

    Article  CAS  Google Scholar 

  29. Long, Z. D., Xu, J. H., Zhao, L. L., & Pan, J. (2007). Chinese Journal of Catalysis, 28, 175–179.

    Article  CAS  Google Scholar 

  30. Gao, L., Xu, J. H., & Li, X. J. (2004). Journal of Industrial Microbiology and Biotechnology, 31, 525–530.

    Article  CAS  Google Scholar 

  31. Chin, J. H., Rahman, R. N. Z. A., Salleh, A. B., & Basri, M. (2003). Biochemical Engineering Journal, 15, 147–151.

    Article  CAS  Google Scholar 

  32. Jinwal, U. K., Roy, U., Chowdhury, A. R., Bhaduri, A. P., & Roy, P. K. (2003). Bioorganic and Medicinal Chemistry, 11, 1041–1046.

    Article  CAS  Google Scholar 

  33. Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). Bioinformatics, 22, 195–201.

    Article  CAS  Google Scholar 

  34. Kiefer, F., Arnold, K., Kunzli, M., Bordoli, L., & Schwede, T. (2009). Nucleic Acids Research, 37, 387–392.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National High-tech R&D (863) Program (No. 2007AA02Z225) and the National Special Fund for State Key Laboratory of Bioreactor Engineering (no. 2060204), People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Su-Xia Li or Jian-He Xu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 301 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, SX., Ma, Q., Lin, K. et al. Essential Role of Gly33 in a Novel Organic Solvent-Tolerant Lipase from Serratia marcescens ECU1010 as Determined by Site-Directed Mutagenesis. Appl Biochem Biotechnol 172, 2945–2954 (2014). https://doi.org/10.1007/s12010-013-0690-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0690-4

Keywords

Navigation