Skip to main content

Advertisement

Log in

Hexamerin a Novel Protein Associated with Bacillus sphaericus Resistance in Culex quinquefasciatus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial insecticides like, Bacillus sphaericus and Bacillus thuringiensis serovar israelensis, have been used for the control of nuisance and vector mosquitoes for more than two decades. For many years, it was assumed that the use of microbial larvicides based on B. sphaericus would not lead to resistance in mosquitoes. However, recent reports have shown that B. sphaericus toxins are not free from this problem. Therefore, the resistance of mosquito populations to be will seriously threaten the sustainability of current mosquito control programme using these microbial insecticides. In the present study, we have characterised a novel protein responsible for resistance development in the filariasis vector of Culex quinquefasciatus. Laboratory selection experiments with B. sphaericus against the larvae were carried out up to 17 generations, and the occurrence of resistance was reported (resistance ratio (RR) at lethal concentration (LC)50 and LC90 = 1,987 and 2,051 folds, respectively). The protein profiles of B. sphaericus-resistant and susceptible population have confirmed with the expression of a new polypeptide (80 kDa) in the resistant strain only. Sequence result revealed that the newly expressed protein was ‘hexamerin’, and this factor might conceivably be responsible for the inheritance of resistance. This study is therefore valuable for comprehending the underlining factor and management of B. sphaericus resistance problem in mosquito population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. WHO. (1995). World Health Organization Technical Report Series, 857, 1–91.

    Google Scholar 

  2. Phillips, R. S. (2001). Clinical Microbiology and Research, 14, 208–226.

    Article  CAS  Google Scholar 

  3. Yuan, Z. M., Nielsen-LeRoux, C., Pasteur, N., & Charles, J. F. (1999). Acta Microbiologica Sinica, 39, 29–35.

    CAS  Google Scholar 

  4. Zahiri, N. S., Su, T., & Mulla, M. S. (2002). Journal of Medical Entomology, 39, 513–520.

    Article  Google Scholar 

  5. Wickremesinghe, R. S. B., & Mendis, C. L. (1980). Mosquito News, 40, 387–389.

    Google Scholar 

  6. Singer, S. (1990). Bacterial control of mosquitoes and black flies (pp. 221–227). New Brunswick: Rutgers University Press.

    Book  Google Scholar 

  7. de Barjac, H. (1990). Bacterial control of mosquitoes and black flies (pp. 228–236). New Brunswick: Rutgers University Press.

    Book  Google Scholar 

  8. Davidson, E. W. (1988). Journal of Medical Entomology, 25, 151–157.

    CAS  Google Scholar 

  9. Charles, J. F., Nielsen-LeRoux, C., & Delecluse, A. (1996). Annual Review of Entomology, 41, 451–472.

    Article  CAS  Google Scholar 

  10. Darboux, I., Nielsen-LeRoux, C., Charles, J. F., Pauchet, Y., & Pauron, D. (2007). Insect Biochemistry and Molecular Biology, 31, 981–990.

    Article  Google Scholar 

  11. Wirth, M. C., Walton, W. E., & Federici, B. A. (2010). Environmental Microbiology, 12, 1154–1160.

    Article  CAS  Google Scholar 

  12. Charles, J. F., & Nicolas, L. (1986). Annales de l’Institut Pasteur Microbiology, 137B, 101–111.

    Article  CAS  Google Scholar 

  13. Davidson, E. W., & Yousten, A. A. (1990). Applied Microbiology and Biotechnology, 38, 237–255.

    Google Scholar 

  14. Poopathi, S., & Abidha, S. (2010). Journal of Physiology and Pathophysiology, 1, 22–38.

    CAS  Google Scholar 

  15. Rao, D. R., Mani, T. R., Rajendran, R., Joseph, A. S., & Gajanana, A. (1995). Journal of the American Mosquito Control Association, 11, 1–5.

    CAS  Google Scholar 

  16. Nielsen-LeRoux, C., Charles, J. F., Thiery, I., & Georghiou, G. P. (1995). European Journal of Biochemistry, 228, 206–210.

    Article  CAS  Google Scholar 

  17. Rodcharoen, J., & Mulla, M. S. (1994). Journal of Economic Entomology, 87, 1133–1140.

    Google Scholar 

  18. Nielsen-LeRoux, C., Rao, D. R., Rodcharoen, J., Carron, A., Mani, T. R., Hamon, S., & Mulla, M. S. (2001). Applied and Environmental Microbiology, 67, 5049–5054.

    Article  CAS  Google Scholar 

  19. Cheng Zhu, Y., Muthukrishnan, S., & Kramer, K. J. (2002). Insect Biochemistry and Molecular Biology, 32, 526–536.

    Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Far, A. L., & Randall, R. L. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  21. Abbott, W. S. (1925). Journal of Economic Entomology, 18, 65–267.

    Google Scholar 

  22. Poopathi, S., & Tyagi, B. K. (2002). Japanese Journal of Applied Entomology and Zoology, 37, 365–371.

    Article  Google Scholar 

  23. Lammeli, U. K. (1970). Nature, 227, 680–685.

    Article  Google Scholar 

  24. Kanost, M. R., Kawooya, J. K., Ryan, R. D., Van Heusden, M. C., & Ziegler, R. (2003). Advances in Insect Physiology, 22, 299–366.

    Article  Google Scholar 

  25. Telfer, W. H., & Kunkel, J. G. (1991). Annual Review of Entomology, 36, 205–228.

    Article  CAS  Google Scholar 

  26. Scheller, K., Fischer, B., & Schenkel, H. (1990). Molecular insect science (pp. 155–162). New York: Plenum.

    Book  Google Scholar 

  27. Poopathi, S., Nielsen-LeRoux, C., & Charles, J.-F. (2002). Journal of Invertebrate Pathology, 79, 132–134.

    Article  CAS  Google Scholar 

  28. Burmester, T., & Scheller, K. (1995). Journal of Molecular Evolution, 42, 713–728.

    Article  Google Scholar 

  29. Kirankumar, N., Ismail, S. M., & Dutta-Gupta, A. (1997). Insect Biochemistry and Molecular Biology, 27, 671–679.

    Article  CAS  Google Scholar 

  30. Maa, G., Robertsa, H., Sarjanb, M., Featherstonec, N., Lahnsteinc, J., Akhurstd, R., & Schmidta, O. (2005). Insect Biochemistry and Molecular Biology, 35, 729–739.

    Article  CAS  Google Scholar 

  31. Arif, A., Scheller, K., & Dutta-Gupta, A. (2003). Insect Biochemistry and Molecular Biology, 33, 921–928.

    Article  CAS  Google Scholar 

  32. Scherfer, C., Karlsson, C., Loseva, O., Bidla, G., Goto, A., Havemann, J., Dushay, M. S., & Theopold, U. (2004). Current Biology, 14, 625–629.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. P. Jambulingam, The Director, VCRC, Pondicherry 605006, India, for the permission and the Department of Science and Technology (DST), New Delhi (project F.NO.SR/SO/HS-02/2008, dated 30 December 2009) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subbiah Poopathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poopathi, S., Thirugnanasambantham, K., Mani, C. et al. Hexamerin a Novel Protein Associated with Bacillus sphaericus Resistance in Culex quinquefasciatus . Appl Biochem Biotechnol 172, 2299–2307 (2014). https://doi.org/10.1007/s12010-013-0681-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0681-5

Keywords

Navigation