Skip to main content
Log in

Inter-Simple Sequence Repeat (ISSR) Marker Analysis in Parkia timoriana (DC.) Merr. Populations from Northeast India

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Genetic variation in three populations of Parkia timoriana (DC.) Merr. grown in the Manipur state of northeast India was analysed using inter-simple sequence repeat (ISSR) markers. A total of 30 individual trees representing three populations were sampled and studied using 22 University of British Columbia (UBC set no. 9) primers in the present study. Of the total 22 primers, 19 primers produced distinct, reproducible and well-resolved fragments. Overall, a total number of 111 fragments were generated by the 19 primers and of which, 51 were polymorphic (45.94 %). The average number of loci and polymorphic loci generated per primer were 5.84 and 2.68, respectively. The genetic variation generated by ISSR markers within the three populations studied ranges from 33.33 to 18.92 %. The overall genetic differentiation (Gst) among populations was estimated to be 0.29, and the number of gene flow (Nm) was estimated to be 1.23 per generation between populations. Of the total genetic variance, 70.04 % was attributed to within-population diversity while 4.72 % differences to the among-populations. The genetic similarity across the individuals belonging to the three populations was represented by the dendrogram showing the grouping of the individuals into three major groups which is also supported by the principle component analysis. The present finding asserts the effectiveness of ISSR procedure for assessing genetic variations of P. timoriana populations and provides valuable genetic information that can be utilized for breeding and conservation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schaal, B. A., & Learn, G. H. (1988). Annals of the Missouri Botanical Garden, 75, 1202–1216.

    Article  Google Scholar 

  2. Hamrick, J. L., Godt, M. J. W., Murauski, D. A., & Lordess, M. D. (1991). In D. A. Falk & K. E. Holsinger (Eds.), Genetics and conservation of rare plants: implications for conservation biology (pp. 75–86). New York: Oxford University Press.

    Google Scholar 

  3. Rogers, D. L., & Ledig, F. T. (1996). Genetic Resources Conservation Program, Report No. 16. Davis, CA: University of California.

    Google Scholar 

  4. Namkoong, G. (1997). Paper for FORGEN News. Rome, Italy: International Plant Genetic Resources Institute (IPGRI).

    Google Scholar 

  5. Hopkins, H. C. F. (1994). Kew Bulletin, 49, 182–234.

    Article  Google Scholar 

  6. Kanjilal, U. N., Kanjilal, P. C., & Das, A. (1982). Flora of Assam. Delhi: Avon.

    Google Scholar 

  7. Longvah, T., & Deosthale, Y. G. (1998). Food Chemistry, 62, 477–481.

    Article  CAS  Google Scholar 

  8. Suvachittanont, W., Kurashima, Y., Esumi, H., & Tsuda, M. (1996). Food Chemistry, 55, 359–363.

    Article  CAS  Google Scholar 

  9. Meitei, W. I., & Singh, A. I. (1990). Indian Journal of Hill Farming, 3, 47–49.

    Google Scholar 

  10. Salam, J. S., & Singh, S. B. (1997). Indian Journal of Hill Farming, 10, 115–118.

    Google Scholar 

  11. Avise, J. C. (1976). In F. J. Ayala (Ed.), Molecular evolution: genetic differentiation during speciation (pp. 106–122). Sunderland, MA: Sinnauer.

    Google Scholar 

  12. Gupta, P. K., & Varshney, R. K. (2000). Euphytica, 113, 163–185.

    Article  CAS  Google Scholar 

  13. Avise, J. C., Bowen, B. W., & Lamb, T. (1989). Molecular Biology and Evolution, 6, 258–269.

    CAS  Google Scholar 

  14. Thangjam, R., Damayanti, M., & Jitendra, G. S. (2003). Journal of Food Agriculture and Environment, 1, 46–49.

    CAS  Google Scholar 

  15. Suwannarat, K., & Nualsri, C. (2008). Songklanakarin Journal of Science and Technology, 30, 433–440.

    Google Scholar 

  16. Parsons, B. J., Newbury, H. J., Jackson, M. T., & Ford-Lloyd, B. V. (1997). Molecular Breeding, 3, 115–125.

    Article  CAS  Google Scholar 

  17. Chowdhury, M. A., Vandenberg, B., & Warkentin, T. (2002). Euphytica, 127, 317–325.

    Article  CAS  Google Scholar 

  18. Goulao, L., & Oliveira, C. M. (2001). Euphytica, 122, 81–89.

    Article  CAS  Google Scholar 

  19. Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994). Genomics, 20, 176–183.

    Article  CAS  Google Scholar 

  20. Kantety, R. V., Zeng, X., Bennetzen, J. L., & Zehr, B. E. (1995). Molecular Breeding, 1, 365–373.

    Article  CAS  Google Scholar 

  21. Godwin, I. D., Aitken, E. A. B., & Smith, L. W. (1997). Electrophoresis, 18, 1524–1528.

    Article  CAS  Google Scholar 

  22. Archak, S., Gaikwad, A. B., Gautam, D., et al. (2003). Genome, 46, 362–369.

    Article  CAS  Google Scholar 

  23. Thangjam, R., Damayanti, M., & Jitendra, G. S. (2003). Journal of Food Agriculture and Environment, 1, 36–38.

    CAS  Google Scholar 

  24. Nei, M. (1978). Genetics, 89, 583–590.

    CAS  Google Scholar 

  25. Yeh, F. C., Yang, R. C., Boyle, T. B., et al. (1997). POPGENE ver. 1.32, the user-friendly shareware for population genetic analysis. Canada: Molecular Biology and Biotechnology Center, University of Alberta.

    Google Scholar 

  26. Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Genetics, 131, 479–491.

    CAS  Google Scholar 

  27. Rohlf, F. J. (2000). NTSYS-pc ver. 2.2a numerical taxonomy and multivariate analysis system. New York: Exeter Software.

    Google Scholar 

  28. Nei, M. (1972). American Naturalist, 106, 283–292.

    Article  Google Scholar 

  29. Weir, B. S. (1996). Methods for discrete population genetic data. Sunderland, MA: Sinauer Assoc., Inc.

    Google Scholar 

  30. Hamrick, J. L., Linhaart, Y. B., & Mitton, J. B. (1979). Annual Review of Ecology, Evolution, and Systematics, 10, 173–200.

    Article  Google Scholar 

  31. Nevo, E., Beiles, A., & Ben-Shlomo, R. (1984). In G. S. Mani (Ed.), Lecture notes in biomathematics, vol. 53: evolutionary dynamics of genetic diversity (pp. 13–123). New York: Springer.

    Chapter  Google Scholar 

  32. Loveless, M. D., & Hamrick, J. L. (1984). Annual Review of Ecology, Evolution, and Systematics, 15, 65–95.

    Article  Google Scholar 

  33. Hamrick, J. L., & Godt, M. J. W. (1989). In A. H. D. Brown, M. T. Clegg, A. L. Kahler, et al. (Eds.), Plant population genetics, breeding and genetic resources: allozyme diversity in plant species (pp. 43–63). Sunderland, MA: Sinauer Press.

    Google Scholar 

  34. Bussell, J. D. (1999). Molecular Ecology, 8, 775–789.

    Article  CAS  Google Scholar 

  35. Li, H. S., & Chen, G. Z. (2004). Acta Ecologica Sinica, 24, 1656–1662.

    Google Scholar 

  36. Slatkin, M. (1985). Annual Review of Ecology, Evolution, and Systematics, 16, 393–430.

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledge the Department of Biotechnology (DBT), Ministry of Science and Technology and Government of India for the award of postdoctoral fellowship and Prof. M. Rohinikumar Singh (Ex-Director, Institute of Bioresources and Sustainable Development, Imphal, India) for providing necessary facilities for the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Thangjam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thangjam, R. Inter-Simple Sequence Repeat (ISSR) Marker Analysis in Parkia timoriana (DC.) Merr. Populations from Northeast India. Appl Biochem Biotechnol 172, 1727–1734 (2014). https://doi.org/10.1007/s12010-013-0639-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0639-7

Keywords

Navigation