Skip to main content

Advertisement

Log in

Bioremediation of Cd by Microbially Induced Calcite Precipitation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 29 April 2015

Abstract

Contamination by Cd is a significant environmental problem. Therefore, we examined Cd removal from an environmental perspective. Ureolysis-driven calcium carbonate precipitation has been proposed for use in geotechnical engineering for soil remediation applications. In this study, 55 calcite-forming bacterial strains were newly isolated from various environments. Biomineralization of Cd by calcite-forming bacteria was investigated in laboratory-scale experiments. A simple method was developed to determine the effectiveness of microbially induced calcite precipitation (MICP). Using this method, we determined the effectiveness of biomineralization for retarding the flow of crystal violet through a 25-mL column. When the selected bacteria were analyzed using an inductively coupled plasma optical emission spectrometer, high removal rates (99.95 %) of Cd were observed following incubation for 48 h. Samples of solids that formed in the reaction vessels were examined using a scanning electron microscope. The CdCO3 compounds primarily showed a spherical shape. The results of this study demonstrate that MICP-based sequestration of soluble heavy metals via coprecipitation with calcite may be useful for toxic heavy metal bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li, M., Cheng, X., & Guo, H. (2013). International Biodeterioration and Biodegradation, 76, 81–85.

    Article  CAS  Google Scholar 

  2. Yavuz, Ö., Guzel, R., Aydin, F., Tegin, I., & Ziyadanogullari, R. (2007). Polish Journal of Environmental Studies, 16, 467–471.

    CAS  Google Scholar 

  3. Boquet, E., Boronat, A., & Cormenzana, A. R. (1973). Nature, 246, 527–529.

    Article  Google Scholar 

  4. Rivadeneyra, M. A., Delgado, R., Moral, A. D., Ferrer, M. R., & Cormenzana, A. R. (1993). FEMS Microbiology Ecology, 13, 197–204.

    Article  Google Scholar 

  5. Whiffin, V. S., Paassen, L. A., & Harkes, M. P. (2007). Geomicrobiology Journal, 24, 417–423.

    Article  CAS  Google Scholar 

  6. Hammes, F., & Verstraete, W. (2002). Reviews in Environmental Science and Biotechnology, 1, 3–7.

    Article  CAS  Google Scholar 

  7. Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Soil Biology & Biochemistry, 31, 1563–1571.

    Article  CAS  Google Scholar 

  8. Chun, J., Lee, J. H., Jung, Y., Kim, M., Kim, S., & Kim, B. K. (2007). International Journal of Systematic and Evolutionary Microbiology, 57, 2259–2261.

    Article  CAS  Google Scholar 

  9. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). Molecular and Biological Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  10. Natarajan, K. R. (1995). Journal of Chemical Education, 73, 556–557.

    Article  Google Scholar 

  11. Hammes, F., Boon, N., De Villiers, J., Verstraete, W., & Siciliano, S. D. (2003). Applied and Environmental Microbiology, 69, 4901–4909.

    Article  CAS  Google Scholar 

  12. Stahler, M. F., Ganter, L., Katherin, L., Manfred, K., & Stephen, B. (2005). FEMS Immunology and Medical Microbiology, 44, 183–189.

    Article  Google Scholar 

  13. Park, I. S., & Hausinger, R. P. (1995). Science, 267, 1156–1158.

    Article  CAS  Google Scholar 

  14. Qian, C., Wang, R., Cheng, L., & Wang, J. (2010). Chinese Journal of Chemistry, 28, 847–857.

    Article  CAS  Google Scholar 

  15. DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Ecological Engineering, 36, 197–210.

    Article  Google Scholar 

  16. Hamidi, A. A., Mohd, N. N., & Kamar, S. A. (2008). Bioresource Technology, 99, 1578–1583.

    Article  Google Scholar 

  17. Sanchez, A. G., & Ayuso, E. A. (2002). Minerals Engineering, 15, 539–547.

    Article  Google Scholar 

  18. Luo, S., Xiao, X., Xi, Q., Wan, Y., Chen, L., Zeng, G., et al. (2011). Journal of Hazardous Materials, 190, 1079–1082.

    Article  CAS  Google Scholar 

  19. Cheung, K. H., Lai, H. Y., & Gu, J. D. (2006). Journal of Microbiology and Biotechnology, 16, 855–862.

    CAS  Google Scholar 

  20. Cheung, K. H., & Gu, J. D. (2007). International Biodeterioration & Biodegradation, 59, 8–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2011-0025229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Seong So.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, CH., Han, SH., Shin, Y. et al. Bioremediation of Cd by Microbially Induced Calcite Precipitation. Appl Biochem Biotechnol 172, 1929–1937 (2014). https://doi.org/10.1007/s12010-013-0626-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0626-z

Keywords

Navigation