Skip to main content
Log in

In Vitro and In Vivo Characterization of Plant Growth Promoting Bacillus Strains Isolated from Extreme Environments of Eastern Algeria

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This report is to our knowledge the first to study plant growth promotion and biocontrol characteristics of Bacillus isolates from extreme environments of Eastern Algeria. Seven isolates of 14 (50 %) were screened for their ability to inhibit growth of some phytopathogenic fungi on PDA and some roots exudates. The bacteria identification based on 16S r-RNA and gyrase-A gene sequence analysis showed that 71 % of the screened isolates belonged to Bacillus amyloliquefaciens and the rest were closely related to B. atrophaeus and B. mojavensis. Most of them had high spore yields (22 × 108–27 × 108 spores/ml). They produced protease and cellulase cell wall-degrading enzymes while the chitinase activity was only observed in the B. atrophaeus (6SEL). A wide variety of lipopeptides homologous was detected by liquid chromatography–electrospray ionization–mass spectrometry analysis. Interestingly, some additional peaks with new masses were characterized, which may correspond to new fengycin classes. The isolates produced siderophores and indole-3- acetic acid phytohormone. The greenhouse experiment using a naturally infested soil with Sclerotonia sclerotiorum showed that the B. atrophaeus (6SEL) significantly increased the size of the chickpea plants and reduced the stem rot disease (P < 0.05). These results suggest that these isolates may be used further as bio-inoculants to improve crop systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Strange, R. N., & Scott, P. R. (2005). Annual Review of Phytopathology, 43, 83–116.

    Article  CAS  Google Scholar 

  2. Gerhardson, B. (2002). Trends in Biotechnology, 20, 338–343.

    Article  CAS  Google Scholar 

  3. Lugtenberg, B., & Kamilova, F. (2009). Annual Review of Microbiology, 63, 541–556.

    Article  CAS  Google Scholar 

  4. Fravel, D. R. (2005). Annual Review of Phytopathology, 43, 337–359.

    Article  CAS  Google Scholar 

  5. Lolloo, R., Maharaih, D., Görgens, J., & Gardiner, N. (2010). Applied Microbiology and Biotechnology, 86, 499–508.

    Article  Google Scholar 

  6. McSpadden Gardener, B. B. (2004). Phytopathology, 94, 1252–1258.

    Article  CAS  Google Scholar 

  7. Ongena, M., & Jacques, P. (2008). Trends in Biotechnology, 16, 115–125.

    CAS  Google Scholar 

  8. Raaijmakers, J. M., De Bruijn, I., & De Kock, M. J. (2006). Molecular Plant-Microbe, 19, 699–710.

    Article  CAS  Google Scholar 

  9. Xu, Z., Shao, J., Li, B., Yan, X., Shen, Q., Zhang, R. (2012). Applied Environmental Microbiology

  10. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., & Pare, P. W. (2004). Plant Physiology, 134, 1017–1026.

    Article  CAS  Google Scholar 

  11. Beneduzi, A., Peres, D., Da Costa, P. B., & Zanettini, M. H. B. (2008). Research in Microbiology, 159, 244–250.

    Article  CAS  Google Scholar 

  12. Haas, D., & Defago, G. (2005). Biological control of soil-borne pathogens by fluorescent Pseudomonas. Nature Reviews Microbiology, 3, 307–319.

    Article  CAS  Google Scholar 

  13. De Carvalho, C. C. C. R., & Pedro, F. M. (2010). Drugs, 8, 705–727.

    Google Scholar 

  14. Dib, J. R., Weiss, A., Neumann, A., Ordoñez, O., Estévez, M. C., & Farías, M. E. (2009). Recent Patents on Anti-Infective Drug Discovery, 4, 66–76.

    Article  CAS  Google Scholar 

  15. Seldin, L., van Elsas, J. D., & Penido, E. G. C. (1983). Plant and Soil, 70, 243–255.

    Article  Google Scholar 

  16. Toure, Y., Ongena, M., Jacques, P., Guiro, A., & Thonart, P. (2004). Journal of Applied Microbial, 96, 1151–1160.

    Article  CAS  Google Scholar 

  17. Jacques, P., Hbid, C., Destain, J., Razafindralambo, H., Paquot, M., De Pauw, E., et al. (1999). Applied Biochemistry and Biotechnology, 77, 223–233.

    Article  Google Scholar 

  18. Ventura, M., Elli, M., Reniero, R., & Zink, R. (2001). FEMS Microbiology Ecology, 36, 113–121.

    Article  CAS  Google Scholar 

  19. Roberts, M. S., Nakamura, L. K., & Cohan, F. M. (1994). International Journal of Systematic Bacteriology, 44, 256–264.

    Article  CAS  Google Scholar 

  20. Nihorimbere, V., Cawoy, H., Seyer, A., Brunelle, A., Thonart, P., & Ongena, M. (2012). FEMS Microbiology Ecology, 79, 176–191.

    Article  CAS  Google Scholar 

  21. Glickmann, E., & Dessaux, Y. (1995). Applied and Environment Microbiology, 61, 793–796.

    CAS  Google Scholar 

  22. Aris, T. W., Rina, P. A., Asri, W., Anja, M., & Abdjad, A. N. (2011). Journal Microbiology Antimicrobials, 3, 34–40.

    Google Scholar 

  23. Pamela, C., Ernesto, O. O., Esperanza, M. R., & Doris, Z. (2010). Brazilian Journal of Microbiology, 41, 899–906.

    Article  Google Scholar 

  24. Husen, E. (2003). Indonesian Journal of Agricultural Science, 4, 27–31.

    Google Scholar 

  25. Ariffin, H., Abdullah, N., Umi Kalsom, M. S., Shirai, Y., & Hassan, M. A. (2006). International Journal of Engineering Technology, 3, 47–53.

    Google Scholar 

  26. Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M., & Vivanco, J. M. (2003). Science, 301, 1377–1380.

    Article  CAS  Google Scholar 

  27. Walker, T. S., Bais, H. P., Grotewold, E., & Vivanco, J. M. (2003). Plant Physiology, 132, 44–51.

    Article  CAS  Google Scholar 

  28. Weir, T. L., Park, S. W., & Vivanco, J. M. (2004). Current Opinion in Plant Biology, 7, 472–479.

    Article  CAS  Google Scholar 

  29. Cawoy, H., Bettiol, W., Fickers, P., Ongena, M. (2012). Available on: www.intechopen.com/download/pdf/21989 l.

  30. Bing-Lan, L., & Yew-Min, T. (1998). Bioprocess Engineering, 18, 413–418.

    Google Scholar 

  31. Jongsik, C., & Kyung, S. B. (2000). Antonie van Leeuwenhoek, 78, 123–127.

    Article  Google Scholar 

  32. Loni, P., & Bajekal, S. (2011). Indian Journal of Fundamental and Applied Life Sciences, 3, 161–165.

    Google Scholar 

  33. Ortega-Morales, B. O., Ortega-Morales, F. N., Lara-Reyna, J., De la Rosa-García, S. C., Martínez-Hernández, A., & Jorge Montero, M. (2009). Marine Biotechnology, 11, 375–383.

    Article  CAS  Google Scholar 

  34. Vinay, V. (2008). Microbes and Environments, 23, 350–352.

    Article  Google Scholar 

  35. Gong, M., Wang, J., Zhang, J., Yang, H., & Lu, X. (2006). Acta Biochimica et Biophysica Sincia, 38, 233–240.

    Article  CAS  Google Scholar 

  36. Compant, S., Duffy, B., Nowak, J., Clement, C., & Barka, E. A. (2005). Applied and Environment Microbiology, 71, 4951–4959.

    Article  CAS  Google Scholar 

  37. Sandrin, C., Peypoux, F., & Michel, G. (1990). Biotechnology and Applied Biochemistry, 12, 370–375.

    CAS  Google Scholar 

  38. Malfanova, N., Franzil, L., Lugtenberg, B., Chebotar, V., Ongena, M. (2012). 194,893-9.

  39. Pathak, K. V., Keharia, H., Gupta, K., Thakur, S. S., & Balaram, P. (2012). Journal of The American Society for Mass Spectrometry, 10, 1716–1728.

    Article  Google Scholar 

  40. Cho, E. K., & Choi, I. S. (2011). BMB, 44, 193–198.

    Article  CAS  Google Scholar 

  41. Subhash, Y. (2011). Journal of Basic Microbiology, 51, 98–106.

    Article  Google Scholar 

  42. Hirsch, A. M., Bauer, W. D., Bird, D. M., Cullimore, J., Tyler, B., & Yoder, J. I. (2003). Ecology, 84, 858–868.

    Article  Google Scholar 

  43. Abdel-Monaim, M. F. (2011). Notulae Scientia Biologicae, 3, 80–88.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Sabri Ahmed for his help and guidance in DNA sequences analysis and to Dr Nassim Moula for the statistical analysis of the in vivo test data with SAS program. This study was financed by a fellowships European program Erasmus Mundus External Cooperation Window-consortium AVERROES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Ait-Kaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ait-Kaki, A., Kacem-Chaouche, N., Ongena, M. et al. In Vitro and In Vivo Characterization of Plant Growth Promoting Bacillus Strains Isolated from Extreme Environments of Eastern Algeria. Appl Biochem Biotechnol 172, 1735–1746 (2014). https://doi.org/10.1007/s12010-013-0617-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0617-0

Keywords

Navigation