Skip to main content
Log in

Molecular Cloning, Characterization, and Dye-Decolorizing Ability of a Temperature- and pH-Stable Laccase from Bacillus subtilis X1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Laccases from fungal origin are typically unstable at high temperatures and alkaline conditions. This characteristic limits their practical applications. In this study, a new bacterial strain exhibiting laccase activity was isolated from raw fennel honey samples and identified as Bacillus subtilis X1. The CotA-laccase gene was cloned from strain X1 and efficiently expressed in Escherichia coli in a biologically active form. The purified recombinant laccase demonstrated an extensive pH range for catalyzing substrates and high stability toward alkaline pH and high temperatures. No loss of laccase activity was observed at pH 9.0 after 10 days of incubation, and approximately 21 % of the initial activity was detected after 10 h at 80 °C. Two anthraquinonic dyes (reactive blue 4 and reactive yellow brown) and two azo dyes (reactive red 11 and reactive brilliant orange) could be partially decolorized by purified laccase in the absence of a mediator. The decolorization process was efficiently promoted when methylsyringate was present, with more than 90 % of color removal occurring in 3 h at pH 7.0 or 9.0. These unusual properties indicated a high potential of the novel CotA-laccase for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S., & Sannia, G. (2010). Laccases: a never-ending story. Cellular and Molecular Life Sciences, 67, 369–385.

    Article  CAS  Google Scholar 

  2. Singh, G., Bhalla, A., Kaur, P., Capalash, N., & Sharma, P. (2011). Laccase from prokaryotes: a new source for an old enzyme. Reviews in Environmental Science and Biotechnology, 10, 309–326.

    Article  Google Scholar 

  3. Solomon, E. I., Sundaram, U. M., & Machonkin, T. E. (1996). Multicopper oxidases and oxygenases. Chemical Reviews, 96, 2563–2605.

    Article  CAS  Google Scholar 

  4. Rodríguez Couto, S., & Toca Herrera, J. L. (2006). Industrial and biotechnological applications of laccases: a review. Biotechnology Advances, 24, 500–513.

    Article  Google Scholar 

  5. Claus, H. (2003). Laccases and their occurrence in prokaryotes. Archives of Microbiology, 179, 145–150.

    CAS  Google Scholar 

  6. Sharma, P., Goel, R., & Capalash, N. (2007). Bacterial laccases. World Journal of Microbiology and Biotechnology, 23, 823–832.

    Article  CAS  Google Scholar 

  7. Brissos, V., Pereira, L., Munteanu, F. D., Cavaco-Paulo, A., & Martins, L. O. (2009). Expression system of CotA-laccase for directed evolution and high-throughput screening for the oxidation of high-redox potential dyes. Biotechnology Journal, 4, 558–563.

    Article  CAS  Google Scholar 

  8. Driks, A. (2004). The Bacillus subtilis spore coat. Phytopathology, 94, 1249–1251.

    Article  CAS  Google Scholar 

  9. Dalfard, A. B., Khajeh, K., Soudi, M. R., Naderi-Manesh, H., Ranjbar, B., & Sajedi, R. H. (2006). Isolation and biochemical characterization of laccase and tyrosinase activities in a novel melanogenic soil bacterium. Enzyme and Microbial Technology, 39, 1409–1416.

    Article  CAS  Google Scholar 

  10. Martins, L. O., Soares, C. M., Pereira, M. M., Teixeira, M., Costa, T., Jones, G. H., et al. (2002). Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. Journal of Biological Chemistry, 277, 18849–18859.

    Article  CAS  Google Scholar 

  11. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.

    CAS  Google Scholar 

  12. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular and Biological Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  13. Benkert, P., Marco, B., & Torsten, S. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 27, 343–350.

    Article  CAS  Google Scholar 

  14. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  15. Guan, Z., Yao, W., Ye, J., Dan, W., Shen, J., & Zhang, S. (2007). The construction and characterization of a bifunctional EGFP/sAPRIL fusion protein. Applied Microbiology and Biotechnology, 73, 1114–1122.

    Article  CAS  Google Scholar 

  16. Dwivedi, U. N., Singh, P., Pandey, V. P., & Kumar, A. (2011). Structure–function relationship among bacterial, fungal and plant laccases. Journal of Molecular Catalysis B: Enzymatic, 68, 117–128.

    Article  CAS  Google Scholar 

  17. Qing, G., Ma, L. C., Khorchid, A., Swapna, G. V., Mal, T. K., Takayama, M. M., et al. (2004). Cold-shock induced high-yield protein production in Escherichia coli. Nature Biotechnology, 22, 877–882.

    Article  CAS  Google Scholar 

  18. Koschorreck, K., Richter, S. M., Ene, A. B., Roduner, E., Schmid, R. D., & Urlacher, V. B. (2008). Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Applied Microbiology and Biotechnology, 79, 217–224.

    Article  CAS  Google Scholar 

  19. Baldrian, P. (2006). Fungal laccases-occurrence and properties. FEMS Microbiology Reviews, 30, 215–242.

    Article  CAS  Google Scholar 

  20. Lu, L., Wang, T. N., Xu, T. F., Wang, J. Y., Wang, C. L., & Zhao, M. (2013). Cloning and expression of thermo-alkali-stable laccase of Bacillus licheniformis in Pichia pastoris and its characterization. Bioresource Technology, 134, 81–86.

    Article  CAS  Google Scholar 

  21. Reiss, R., Ihssen, J., & Linda, T. M. (2011). Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum. BMC Biotechnology, 11, 9.

    Article  CAS  Google Scholar 

  22. Singh, G., Capalash, N., Goel, R., & Sharma, P. (2007). A pH-stable laccase from alkali-tolerant γ-proteobacterium JB: purification, characterization and indigo carmine degradation. Enzyme and Microbial Technology, 41, 794–799.

    Article  CAS  Google Scholar 

  23. Forootanfar, H., Faramarzi, M. A., Shahverdi, A. R., & Yazdi, M. T. (2011). Purification and biochemical characterization of extracellular laccase from the ascomycete Paraconiothyrium variabile. Bioresource Technology, 102, 1808–1814.

    Article  CAS  Google Scholar 

  24. Telke, A. A., Kadam, A. A., Jagtap, S. S., Jadhav, J. P., & Govindwar, S. P. (2010). Biochemical characterization and potential for textile dye degradation of blue laccase from Aspergillus ochraceus NCIM-1146. Biotechnology and Bioprocess Engineering, 15, 696–703.

    Article  CAS  Google Scholar 

  25. Halaburgi, V. M., Sharma, S., Sinha, M., Singh, T. P., & Karegoudar, T. B. (2011). Purification and characterization of a thermostable laccase from the ascomycetes Cladosporium cladosporioides and its applications. Process Biochemistry, 46, 1146–1152.

    Article  CAS  Google Scholar 

  26. Singh, D., & Chen, S. (2008). The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin degrading enzymes. Applied Microbiology and Biotechnology, 81, 399–417.

    Article  CAS  Google Scholar 

  27. Ye, M., Li, G., Liang, W. Q., & Liu, Y. H. (2010). Molecular cloning and characterization of a novel metagenome-derived multicopper oxidase with alkaline laccase activity and highly soluble expression. Applied Microbiology and Biotechnology, 87, 1023–1031.

    Article  CAS  Google Scholar 

  28. Dubé, E., Shareck, F., Hurtubise, Y., Daneault, C., & Beauregard, M. (2008). Homologous cloning, expression, and characterisation of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Applied Microbiology and Biotechnology, 79, 597–603.

    Article  Google Scholar 

  29. Fang, Z., Li, T., Wang, Q., Zhang, X., Peng, H., Fang, W., et al. (2011). A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Applied Microbiology and Biotechnology, 89, 1103–1110.

    Article  CAS  Google Scholar 

  30. Rodrigues, C. S. D., Madeira, L. M., & Boaventura, R. A. R. (2009). Treatment of textile effluent by chemical (Fenton’s Reagent) and biological (sequencing batch reactor) oxidation. Journal of Hazardous Materials, 172, 1551–1559.

    Article  CAS  Google Scholar 

  31. Santhanam, N., Vivanco, J. M., Decker, S. R., & Reardon, K. F. (2011). Expression of industrially relevant laccases: prokaryotic style. Trends in Biotechnology, 29, 480–489.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31101331), the Open Project Program of the Key Laboratory of Industrial Biotechnology, Ministry of Education, China (KLIB-KF201001), and New Teachers’ Fund for Doctor Stations, Ministry of Education (20110093120002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-Bing Guan or Xiang-Ru Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, ZB., Zhang, N., Song, CM. et al. Molecular Cloning, Characterization, and Dye-Decolorizing Ability of a Temperature- and pH-Stable Laccase from Bacillus subtilis X1. Appl Biochem Biotechnol 172, 1147–1157 (2014). https://doi.org/10.1007/s12010-013-0614-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0614-3

Keywords

Navigation