Skip to main content

Advertisement

Log in

Metabolic Engineering of Biosynthetic Pathway for Production of Renewable Biofuels

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stephanopoulos, G. (2007). Challenges in engineering microbes for biofuels production. Science, 315(5813), 801–804.

    Article  CAS  Google Scholar 

  2. Serferlein, K. E. (2009) Annual energy review 2008, E.I. Administration.

  3. Fichman, B.T. (2011) Annual energy review 2010. E. I. Administration.

  4. Li, H., Cann, A. F., & Liao, J. C. (2010). Biofuels: biomolecular engineering fundamentals and advances. Annual Review Chemical and Biomolecular Engineering, 1, 19–36.

    Article  CAS  Google Scholar 

  5. Fischer, C. R., Klein-Marcuschamer, D., & Stephanopoulos, G. (2008). Selection and optimization of microbial hosts for biofuels production. Metabolic Engineering, 10, 295–304.

    Article  CAS  Google Scholar 

  6. Fortman, J. L., Chhabra, S., Mukhopadhyay, A., Chou, H., Lee, T. S., Steen, E., & Keasling, J. D. (2008). Biofuel alternatives to ethanol: pumping the microbial well. Trends in Biotechnol, 26, 375–381.

    Article  CAS  Google Scholar 

  7. Lee, S. K., Chou, H., Ham, T. S., Lee, T. S., & Keasling, J. D. (2008). Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Current Opinion in Biotechnology, 19, 556–563.

    Article  CAS  Google Scholar 

  8. Somerville, C., Youngs, H., Taylor, C., Davis, S. C., & Long, S. P. (2010). Feedstocks for lignocellulosic biofuels. Science, 329, 790–792.

    Article  CAS  Google Scholar 

  9. Ingram, L. O., & Doran, J. B. (1995). Conversion of cellulosic materials to ethanol. FEMS Microbiology Reviews, 16, 235–241.

    Article  CAS  Google Scholar 

  10. Lynd, L. R., Weimer, P. J., Zyl, W. H. V., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506–577.

    Article  CAS  Google Scholar 

  11. Jeffries, T. W., & Jin, Y. S. (2004). Metabolic engineering for improved fermentation of pentoses by yeasts. Applied Microbiology and Biotechnology, 63(5), 495–509.

    Article  CAS  Google Scholar 

  12. Dien, B. S., Cotta, M. A., & Jeffries, T. W. (2003). Bacteria engineered for fuel ethanol production current status. Applied Microbiology and Biotechnology, 63, 258–266.

    Article  CAS  Google Scholar 

  13. Ingram, L. O., Conway, T., Clark, D. P., Sewell, G. W., & Preston, J. F. (1987). Genetic engineering of ethanol production in Escherichia coli. Applied and Environmental Microbiology, 53, 2420–2425.

    CAS  Google Scholar 

  14. Ohta, K., Beall, D. S., Mejia, J. L., Shanmugam, K. T., & Ingram, L. O. (1991). Metabolic engineering of Klebsiella oxytoca strain M5A1 for ethanol production from xylose and glucose. Applied and Environmental Microbiology, 57, 2810–2815.

    CAS  Google Scholar 

  15. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., & Picataggio, S. (1995). Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science, 267, 240–243.

    Article  CAS  Google Scholar 

  16. Ho, N. W. Y., Chen, Z., & Brainard, A. P. (1998). Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Applied and Environmental Microbiology, 64, 1852–1859.

    CAS  Google Scholar 

  17. Zhang, F., Rodriguez, S., & Keasling, J. D. (2011). Metabolic engineering of microbial pathways for advanced biofuels production. Current Opinion in Biotechnology, 22(6), 775–783.

    Article  CAS  Google Scholar 

  18. Jones, D. T., & Woods, D. R. (1986). Acetone–butanol fermentation revisited. Microbiological Reviews, 50(4), 484–524.

    CAS  Google Scholar 

  19. Hanai, T., Atsumi, S., & Liao, J. C. (2007). Engineered synthetic pathway for isopropanol production in Escherichia coli. Applied and Environmental Microbiology, 73(24), 7814–7818.

    Article  CAS  Google Scholar 

  20. Jojima, T., Inui, M., & Yukawa, H. (2008). Production of isopropanol by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 77(6), 1219–1224.

    Article  CAS  Google Scholar 

  21. Atsumi, S., Hanai, T., & Liao, J. C. (2008). Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 451, 86–89.

    Article  CAS  Google Scholar 

  22. Inui, M., Suda, M., Kimura, S., Yasuda, K., Suzuki, H., Toda, H., Yamamoto, S., Okino, S., Suzuki, N., & Yukawa, H. (2008). Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Applied Microbiology and Biotechnology, 77(6), 1305–1316.

    Article  CAS  Google Scholar 

  23. Nielsen, D. R., Leonard, E., Yoon, S.-H., Tseng, H.-C., Yuan, C., & Prather, K. L. J. (2009). Engineering alternative butanol production platforms in heterologous bacteria. Metabolic Engineering, 11(4–5), 262–273.

    Article  CAS  Google Scholar 

  24. Steen, E. J., Chan, R., Prasad, N., Myers, S., Petzold, C. J., Redding, A., Ouellet, M., & Keasling, J. D. (2008). Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microbial Cell Factories, 3, 7–36.

    Google Scholar 

  25. Jang, Y. S., Lee, J., Malaviya, A., Seung, D. Y., Cho, J. H., & Lee, S. Y. (2012). Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. Biotechnology Journal, 7(2), 186–198.

    Article  CAS  Google Scholar 

  26. Tirado-Acevedo, O., Chinn, M. S., & Grunden, A. M. (2010). Production of biofuels from synthesis gas using microbial catalysts. Advances in Applied Microbiology, 70, 57–92.

    Article  CAS  Google Scholar 

  27. Lee, I., Johnson, L. A., & Hammond, E. G. (1995). Use of branched chain esters to reduce the crystallization temperature of biodiesel. Journal Oil and Fat Industries, 72(10), 1155–1160.

    CAS  Google Scholar 

  28. Connor, M. R., & Atsumi, S. (2010). Synthetic biology guides biofuel production. J. Biomed. Biotechnol. doi:10.1155/2010/541698.

    Google Scholar 

  29. Jeppsson, M., Traff, K., Johansson, B., Hahn-Hagerdal, B., & Gorwa-Grauslund, M. F. (2002). Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Research, 3, 167–175.

    Article  Google Scholar 

  30. Pasha, C., Kuhad, R. C., & Rao, L. V. (2007). Stain improvement of thermotolerant Saccharomyces cerevisiae VS3 strain for better utilization of lignocellulosic substrates. Journal of Applied Microbiology, 103, 1480–1489.

    Article  CAS  Google Scholar 

  31. Atsumi, S., Cann, A. F., Connor, M. R., Shen, C. R., Smith, K. M., Brynildsen, M. P., Chou, K. J., Hanai, T., & Liao, J. C. (2008). Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic Engineering, 10(6), 305–311.

    Article  CAS  Google Scholar 

  32. Steinbusch, K. J., Hamelers, H. V., & Buisman, C. J. (2008). Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. Water Research, 42(15), 4059–4066.

    Article  CAS  Google Scholar 

  33. Rumbold, K., van Hugo, B. J. J., Vincent, M. G., van Johan, G. W., Karin, M. O., Ronald, S. S., van der Mariët, W. J., & Peter, J. P. (2010). Microbial renewable feedstock utilization. Bioengineering Bugs, 1(5), 359–366.

    Article  Google Scholar 

  34. Clomburg, J. M., & Gonzalez, R. (2010). Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Applied Microbiology and Biotechnology, 86(2), 419–434.

    Article  CAS  Google Scholar 

  35. Gu, Y., Jiang, Y., Wu, H., Liu, X., Li, Z., Li, J., Xiao, H., Shen, Z., Dong, H., Yang, Y., Li, Y., Jiang, W., & Yang, S. (2011). Economical challenges to microbial producers of butanol: feedstock, butanol ratio and titer. Biotechnology Journal, 6(11), 1348–1357.

    Article  CAS  Google Scholar 

  36. Adsul, M. G., Singhvi, M. S., Gaikaiwari, S. A., & Gokhale, D. V. (2011). Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresource Technology, 102(6), 4304–4312.

    Article  CAS  Google Scholar 

  37. Peralta-Yahya, P. P., Zhang, F., del Cardayre, S. B., & Keasling, J. D. (2012). Microbial engineering for the production of advanced biofuels. Nature, 488, 320–328.

    Article  CAS  Google Scholar 

  38. Wen, F., Nair, N. U., & Zhao, H. (2009). Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Current Opinion in Biotechnology, 20(4), 412–419.

    Article  CAS  Google Scholar 

  39. Zuroff, T. R., & Curtis, W. R. (2012). Developing symbiotic consortia for lignocellulosic biofuel production. Applied Microbiology and Biotechnology, 93(4), 1423–1435.

    Article  CAS  Google Scholar 

  40. Dunlop, M. J. (2011). Engineering microbes for tolerance to next-generation biofuels. Biotechnology for Biofuels, 4, 32.

    Article  CAS  Google Scholar 

  41. Cann, A. F., & Liao, J. C. (2008). Production of 2-methyl-1-butanol in engineered Escherichia coli. Applied Microbiology and Biotechnology, 81, 89–98.

    Article  CAS  Google Scholar 

  42. Zhang, K., Sawaya, M. R., Eisenberg, D. S., & Liao, J. C. (2008). Expanding metabolism for biosynthesis of nonnatural alcohols. Proceedings of the National Academy of Sciences of the United States of America, 105, 20653–20658.

    Article  CAS  Google Scholar 

  43. Withers, S. T., Gottlieb, S. S., Lieu, B., Newman, J. D., & Keasling, J. D. (2007). Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Applied and Environmental Microbiology, 73, 6277–6283.

    Article  CAS  Google Scholar 

  44. Steen, E. J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A., McClure, A., Del Cardayre, S. B., & Keasling, J. D. (2010). Microbial production of fatty-acid derived fuels and chemicals from plant biomass. Nature, 463, 559–562.

    Article  CAS  Google Scholar 

  45. Fu, A. S., Liu, R., Zhu, J., & Liu, T. G. (2011). Genetic engineering of microbial metabolic pathway for production of advanced biodiesel. Yi Chuan, 33(10), 1121–1133.

    Article  CAS  Google Scholar 

  46. Colin, V. L., Rodríguez, A., & Cristóbal, H. A. (2011). The role of synthetic biology in the design of microbial cell factories for biofuel production. Journal of Biomedicine and Biotechnology, 60, 18–34.

    Google Scholar 

  47. Kondo, A., Tanaka, T., Hasunuma, T., & Ogino, C. (2010). Applications of yeast cell-surface display in bio-refinery. Recent Patents on Biotechnology, 4(3), 226–234.

    Article  CAS  Google Scholar 

  48. Berry, D. A. (2010). Engineering organism for industrial fuel production. Bioengineering Bugs, 1(5), 303–308.

    Article  Google Scholar 

  49. Zhang, Y. M., & Rock, C. O. (2008). Membrane lipid homeostasis in bacteria. Nature Reviews Microbiology, 6, 222–233.

    Article  Google Scholar 

  50. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    Article  CAS  Google Scholar 

  51. Cheng, Y., Zhou, W. G., Gao, C. F., Lan, K., Gao, Y., & Wu, Q. Y. (2009). Biodiesel production from Jerusalem artichoke (Helianthus tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. Journal of Chemical Technology and Biotechnology, 84, 777–781.

    Article  CAS  Google Scholar 

  52. Milne, T. A., Evans, R. J., & Nagle, N. (1990). Catalytic conversion of microalgae and vegetable oils to premium gasoline, with shape selective zeolites. Biomass, 21, 219–232.

    Article  CAS  Google Scholar 

  53. Miao, X., & Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97, 841–846.

    Article  CAS  Google Scholar 

  54. Xu, H., Miao, X., & Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126, 499–507.

    Article  CAS  Google Scholar 

  55. Huang, G. H., Chen, F., Wei, D., Zhang, X. W., & Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy, 87, 38–46.

    Article  CAS  Google Scholar 

  56. Rottig, A., Wenning, L., Broker, D., & Steinbuchel, A. (2010). Fatty acid alkyl esters: perspectives for production of alternative biofuels. Applied Microbiology and Biotechnology, 85, 1713–1733.

    Article  Google Scholar 

  57. Fujita, Y., Matsuoka, H., & Hirooka, K. (2007). Regulation of fatty acid metabolism in bacteria. Molecular Microbiology, 66, 829–839.

    Article  CAS  Google Scholar 

  58. Kalscheuer, R., Stolting, T., & Steinbuchel, A. (2006). Microdiesel: Escherichia coli engineered for fuel production. Microbiology, 152, 2529–2536.

    Article  CAS  Google Scholar 

  59. Rude, M. A., & Schirmer, A. (2009). New microbial fuels: a biotech perspective. Current Opinion in Microbiology, 12, 274–281.

    Article  CAS  Google Scholar 

  60. Radakovits, R., Jinkerson, R. E., Darzins, A., & Posewitz, M. C. (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell, 9(4), 486–501.

    Article  CAS  Google Scholar 

  61. Lindblad, P., Lindberg, P., Oliveira, P., Stensjö, K., & Heidorn, T. (2012). Design, engineering, and construction of photosynthetic microbial cell factories for renewable solar fuel production. Ambio, 41(2), 163–168.

    Article  Google Scholar 

  62. Oh, Y. K., Raj, S. M., Jung, G. Y., & Park, S. (2011). Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresource Technology, 102(18), 8357–8367.

    Article  CAS  Google Scholar 

  63. Parmar, A., Singh, N. K., Pandey, A., Gnansounou, E., & Madamwar, D. (2011). Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresource Technology, 102(22), 10163–10172.

    Article  CAS  Google Scholar 

  64. Dellomonaco, C., Fava, F., & Gonzalez, R. (2010). The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microbial Cell Factories, 9, 3.

    Article  Google Scholar 

  65. Inokuma, K., Liao, J. C., Okamoto, M., & Hanai, T. (2010). Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. Journal of Bioscience and Bioengineering, 110, 696–701.

    Article  CAS  Google Scholar 

  66. Sonderegger, M., Schumperli, M., & Sauer, U. (2004). Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 70, 2892–2897.

    Article  CAS  Google Scholar 

  67. Shen, C. R., Lan, E. I., Dekishima, Y., Baez, A., Cho, K. M., & Liao, J. C. (2011). High titer anaerobic 1-butanol synthesis in Escherichia coli enabled by driving forces. Applied and Environmental Microbiology, 77, 2905–2915.

    Article  CAS  Google Scholar 

  68. Wang, C., Yoon, S. H., Shah, A. A., Chung, Y. R., Kim, J. Y., Choi, E. S., Keasling, J. D., & Kim, S. W. (2010). Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway. Biotechnology and Bioengineering, 107, 421–429.

    Article  CAS  Google Scholar 

  69. Song, L. (2009). Recovery of E, E-farnesol from cultures of yeast erg9 mutants: extraction with polymeric beads and purification by normal-phase chromatography. Biotechnology Progress, 25, 1111–1114.

    Article  CAS  Google Scholar 

  70. Rude, M. A., Baron, T. S., Brubaker, S., Alibhai, M., Del Cardayre, S. B., & Schirmer, A. (2011). Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species. Applied and Environmental Microbiology, 77, 1718–1727.

    Article  CAS  Google Scholar 

  71. Schirmer, A., Rude, M. A., Li, X., Popova, E., & del Cardayre, S. B. (2010). Microbial biosynthesis of alkanes. Science, 329, 559–562.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to A.K. Singh, Satya Prakash, and Pritee Singh for providing the suggestions, encouragement, and fruitful discussion during preparation of manuscript. The authors appreciate anonymous reviewers of the journal for their valuable comments and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijai Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, V., Mani, I., Chaudhary, D.K. et al. Metabolic Engineering of Biosynthetic Pathway for Production of Renewable Biofuels. Appl Biochem Biotechnol 172, 1158–1171 (2014). https://doi.org/10.1007/s12010-013-0606-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0606-3

Keywords

Navigation