Skip to main content
Log in

Controlled Production of Exopolysaccharides from Enterobacter A47 as a Function of Carbon Source with Demonstration of Their Film and Emulsifying Abilities

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The bacterium Enterobacter A47 has demonstrated the ability to synthesise distinct exopolysaccharides (EPS) as a function of the substrate used. The culture's performance was evaluated in experiments using either glucose or xylose, as single carbon sources, and compared with the substrate (glycerol) used in previous studies. The highest EPS production (13.23 g L−1) was obtained in the glucose fed assay, with a volumetric productivity of 3.38 g L−1 day−1. The use of xylose resulted in lower productivity (1.39 g L−1 day−1). The synthesised polymers have the same main sugar monomers (fucose, glucose, galactose and glucuronic acid), but their relative proportion varied with the substrate used. The acyl groups' content and composition were also affected by the substrate used. The polymers produced from glycerol (EPS-s) and glucose (EPS-g) had identical shear-thinning behaviour and good emulsion-stabilising capacity and their films had similar mechanical and water vapour properties. However, the emulsions stabilised with EPS-g were less stable and destabilised within short periods of time or when subjected to heat and freezing/thawing procedures. On the other hand, the polymer produced from xylose had little emulsion-stabilising capacity and lower apparent viscosity than EPS-s and EPS-g, but its films were considerably more elastic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Freitas, F., Alves, V. D., & Reis, M. A. M. (2011). Trends in Biotechnology, 29, 388–398.

    Article  CAS  Google Scholar 

  2. Celik, G. Y., Aslim, B., & Beyatli, Y. (2008). Carbohydrate Polymers, 73, 178–182.

    Article  CAS  Google Scholar 

  3. López, E., Ramos, I., & Sanromán, M. A. (2003). Journal of Food Engineering, 60, 463–467.

    Article  Google Scholar 

  4. Makkar, R. S., & Cameotra, S. S. (1999). Journal of Surfactants and Detergents, 2, 237–241.

    Article  CAS  Google Scholar 

  5. Singh, R. S., Saini, G. K., & Kennedy, J. F. (2008). Carbohydrate Polymers, 73, 515–531.

    Article  CAS  Google Scholar 

  6. Rosalam, S., & England, R. (2006). Enzyme and Microbial Technology, 39, 197–207.

    Article  CAS  Google Scholar 

  7. Zhang, Z., & Chen, H. (2010). Applied Biochemistry and Biotechnology, 160, 1653–1663.

    Article  CAS  Google Scholar 

  8. Rehm, B. H. A. (2009). Microbial production of biopolymers and polymer precursors: Applications and perspectives. Norfolk: Caister Academic.

    Google Scholar 

  9. Alves, V. D., Freitas, F., Torres, C. A. V., Cruz, M., Marques, R., Grandfils, C., Gonçalves, M. P., Oliveira, R., & Reis, M. A. M. (2010). Carbohydrate Polymers, 81, 758–764.

    Article  CAS  Google Scholar 

  10. Torres, C. A. V., Marques, R., Antunes, S., Alves, V. D., Sousa, I., Ramos, A. M., Oliveira, R., Freitas, F., & Reis, M. A. M. (2011). Journal of Biotechnology, 156, 261–267.

    Article  CAS  Google Scholar 

  11. Cruz, M., Freitas, F., Torres, C. A. V., Reis, M. A. M., & Alves, V. D. (2011). International Journal of Biological Macromolecules, 48, 695–699.

    Article  CAS  Google Scholar 

  12. Freitas, F., Alves, V. D., Torres, C. A. V., Cruz, M., Sousa, I., Melo, M. J., Ramos, A. M., & Reis, M. A. M. (2011). Carbohydrate Polymers, 83, 159–165.

    Article  CAS  Google Scholar 

  13. Torres, C. A. V., Antunes, S., Ricardo, A. R., Grandfils, C., Alves, V. D., Freitas, F., & Reis, M. A. M. (2012). Bioresource Technology, 119, 148–156.

    Article  CAS  Google Scholar 

  14. Freitas, F., Alves, V. D., Pais, J., Carvalheira, M., Costa, N., Oliveira, R., & Reis, M. A. M. (2010). Process Biochemistry, 45, 297–305.

    Article  CAS  Google Scholar 

  15. Freitas, F., Alves, V. D., Pais, J., Costa, N., Oliveira, C., Mafra, L., Hilliou, L., Oliveira, R., & Reis, M. A. M. (2009). Bioresource Technology, 100, 859–865.

    Article  CAS  Google Scholar 

  16. Freitas, F., Alves, V. D., Carvalheira, M., Costa, N., Oliveira, R., & Reis, M. A. M. (2009). Carbohydrate Polymers, 78, 549–556.

    Article  CAS  Google Scholar 

  17. Gennadios, A., Weller, C. L., & Gooding, C. H. (1994). Journal of Food Engineering, 21, 395–409.

    Article  Google Scholar 

  18. Camper, A. K., McFetters, G. A., Characklis, W. G., & Jones, W. L. (1991). Applied and Environmental Microbiology, 57, 2233–2239.

    CAS  Google Scholar 

  19. Prasertsan, P., Wichienchot, S., Doelle, H., & Kennedy, J. F. (2008). Carbohydrate Polymers, 71, 468–475.

    Article  CAS  Google Scholar 

  20. Singh, A., & Mishra, P. (1995). Microbial pentose utilization: current applications in biotechnology, Vol. 33. Amsterdam: Elsevier.

    Google Scholar 

  21. García-Ochoa, F., Santos, V. E., Casas, J. A., & Gómez, E. (2000). Biotechnology Advances, 18, 549–579.

    Article  Google Scholar 

  22. Saha, B. C. (2004) Chapter 1: Lignocellulose biodegradation and applications in biotechnology. In B. C. Saha & K. Hayashi (Eds), Lignocellulose biodegradation (pp. 2–34). Washington: American Chemical Society.

  23. Staudt, A. K., Wolfe, L. G., & Shrout, J. D. (2011). Archives of Microbiology. doi:10.1007/s00203-001-0742-5.

    Google Scholar 

  24. Cerning, J., Renard, C. M. G. C., Thibault, J. F., Bouillanne, C., Landon, M., Desmazeaud, M., & Topisirovic, L. (1994). Applied and Environmental Microbiology, 60, 3914–3919.

    CAS  Google Scholar 

  25. Grobben, G. F., Smith, M. R., Sikkema, J., & de Bont, J. A. M. (1996). Applied Microbiology and Biotechnology, 46, 279–284.

    Article  CAS  Google Scholar 

  26. Petry, S., Furlan, S., Crepeau, M.-J., Cerning, J., & Desmazeaud, M. (2000). Applied and Environmental Microbiology, 66, 3427–3431.

    Article  CAS  Google Scholar 

  27. Bryan, B. A., Linhardt, R. J., & Daniels, L. (1986). Applied and Environmental Microbiology, 51, 1304–1308.

    CAS  Google Scholar 

  28. Bae, I., Oh, I., Lee, S., Yoo, S., & Lee, H. (2008). International Journal of Biological Macromolecules, 42, 10–13.

    Article  CAS  Google Scholar 

  29. Morris, E., Cutler, A., Ross-Murphy, S., Rees, D., & Price, J. (1981). Carbohydrate Polymers, 1, 5–21.

    Article  CAS  Google Scholar 

  30. Hilliou, L., Freitas, F., Oliveira, R., Reis, M. A. M., Lespineux, D., Grandfils, C., & Alves, V. D. (2009). Carbohydrate Polymers, 78, 526–532.

    Article  CAS  Google Scholar 

  31. Bourdon, A. I., Pinheiro, A. C., Ribeiro, C., Miranda, C., Maia, J. M., Teixeira, J. A., & Vicente, A. A. (2010). Food Hydrocolloid, 24, 184–192.

    Article  Google Scholar 

  32. Choppe, E., Puaud, F., Nicolai, T., & Benyahia, L. (2010). Carbohydrate Polymers, 82, 1228–1235.

    Article  CAS  Google Scholar 

  33. Xu, L., Xu, G., Liu, T., Chen, Y., & Gong, H. (2013). Carbohydrate Polymers, 92, 516–522.

    Article  CAS  Google Scholar 

  34. Bharali, P., & Konwar, B. K. (2011). Applied Biochemistry and Biotechnology, 164, 1444–1460.

    Article  CAS  Google Scholar 

  35. Saimmai, A., Rukadee, O., Onlamool, T., Sobhon, V., & Maneerat, S. (2012). Applied Biochemistry and Biotechnology, 168, 1003–1018.

    Article  CAS  Google Scholar 

  36. Willumsen, P. A. E., & Karlson, U. (1997). Biodegradation, 7, 415–423.

    Article  Google Scholar 

  37. Chabrand, R. M., Kim, H.-J., Zhang, C., Glatz, C. E., & Jung, S. (2008). Journal of the American Oil Chemists' Society, 85, 383–390.

    Article  CAS  Google Scholar 

  38. Rinaudo, M. (2001). Food Hydrocolloid, 15, 433–440.

    Article  CAS  Google Scholar 

  39. Ridout, M. J., Brownsey, G. J., York, G. M., Walker, G. C., & Morris, V. J. (1997). International Journal of Biological Macromolecules, 20, 1–7.

    Article  CAS  Google Scholar 

  40. Ross-Murphy, S. B., Shatwell, K. P., Sutherland, I. W., & Dea, I. C. M. (1996). Food Hydrocolloid, 10, 117–122.

    Article  CAS  Google Scholar 

  41. Sutherland, I. W. (2001). Microbiology, 147, 3–9.

    CAS  Google Scholar 

  42. Alves, V. D., Ferreira, A. R., Freitas, F., Reis, M. A. M., & Coelhoso, I. M. (2011). Carbohydrate Polymers, 83, 1582–1590.

    Article  CAS  Google Scholar 

  43. Wu, C., Peng, S., Wen, C., Wang, X., Fan, L., Deng, R., & Pang, J. (2012). Carbohydrate Polymers, 89, 497–503.

    Article  CAS  Google Scholar 

  44. Shih, F. F., Daigle, K. W., & Champagne, E. T. (2011). Food Chemistry, 127, 118–121.

    Article  CAS  Google Scholar 

  45. Yang, L., Paulson, A. T., & Nickerson, M. T. (2010). Food Research International, 43, 1439–1443.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia (FC&T, Portugal) through project PEst-C/EQB/LA0006/2011. Filomena Freitas and Cristiana A.V. Torres acknowledge Fundação para a Ciência e Tecnologia, for Post-Doctoral fellowship SFRH/BPD/72280/2010 and PhD fellowship SFRH/BPD/8777/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filomena Freitas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freitas, F., Alves, V.D., Gouveia, A.R. et al. Controlled Production of Exopolysaccharides from Enterobacter A47 as a Function of Carbon Source with Demonstration of Their Film and Emulsifying Abilities. Appl Biochem Biotechnol 172, 641–657 (2014). https://doi.org/10.1007/s12010-013-0560-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0560-0

Keywords

Navigation