Skip to main content
Log in

Biodegradation of Tetracycline Under Various Conditions and Effects on Microbial Community

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Five hundred tons of antibiotics are consumed yearly in the world. In this study, the biodegradation characteristics of tetracycline (TET) under nitrate-reducing, sulfate-reducing, and methanogenic conditions were determined by batch tests. Also, effects of TET on mixed microbial cultures were revealed by microbiological analysis. In this scope, gas generation and composition, dissolved organic carbon, and electron acceptor concentrations were monitored during 120 days. Additionally, changes on quantities of specific microbial groups were determined by Q-PCR. TET showed non-biodegradable behavior under nitrate- and sulfate-reducing conditions, whereas slightly biodegradable behavior under methanogenic conditions approximately 46 % degradation. The effects of TET on the abundance of mixed culture varied according to taxonomic units. Sulfate-reducing bacteria were inhibited by TET, while archaeal, bacterial, and methanogenic populations were not affected significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kummerer, K. (2001). Pharmaceuticals in the environment: sources, fate, effects and risks (1st ed.). Berlin: Springer.

    Book  Google Scholar 

  2. Xiao, Y., Chang, H., Jia, A., & Hu, J. Y. (2008). Trace analysis of quinolone and fluoroquinolone antibiotics from wastewaters by liquid chromatography electrospray tandem mass spectrometry. Journal of Chromatography A, 1214(1–2), 100–108.

    Article  CAS  Google Scholar 

  3. Li, B., & Zhang, T. (2010). Biodegradation and adsorption of antibiotics in the activated sludge process. Environmental Science and Technology, 44, 3458–3473.

    Google Scholar 

  4. Golet, E. M., Xifra, I., Siegrist, H., Alder, A. C., & Giger, W. (2003). Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environmental Science and Technology, 37(15), 3243–3249.

    Article  CAS  Google Scholar 

  5. Diaz-Cruz, M. S., Garcia-Galan, M. J., & Barcelo, D. (2008). Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography quadrupole linear ion trap-mass spectrometry. Journal of Chromatography A, 1193(1–2), 50–59.

    Article  CAS  Google Scholar 

  6. Hirsch, R., Ternes, T., Haberer, K., & Kratz, K. L. (1999). Occurrence of antibiotics in the aquatic environment. Science of the Total Environment, 225(1–2), 109–118.

    Article  CAS  Google Scholar 

  7. Golet, E. M., Strehler, A., Alder, A. C., & Giger, W. (2002). Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Analytical Chemistry, 74(21), 5455–5462.

    Article  CAS  Google Scholar 

  8. Andreozzi, R., Caprio, V., Ciniglia, C., De Champdore, M., Lo, G. R., Marotta, R., et al. (2004). Antibiotics in the environment occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin. Environmental Science and Technology, 38(24), 6832–6838.

    Article  CAS  Google Scholar 

  9. Blasco, M. D., Esteve, C., & Alcaide, E. (2008). Multi-resistant waterborne pathogens isolated from water reservoirs and cooling systems. Journal of Applied Microbiology, 105, 469–475.

    Article  CAS  Google Scholar 

  10. Munir, M., Wong, K., & Xagoraraki, I. (2011). Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Science and Technology, 45, 681–693.

    CAS  Google Scholar 

  11. Masse, D. I., Masse, D. L., & Droste, R. L. (2000). Effect of antibiotics on psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors. Bioresource Technology, 75, 205–211.

    Article  CAS  Google Scholar 

  12. Arikan, O. A., Sikora, L. J., Mulbry, W., Khan, S. U., Rice, C., & Foster, G. D. (2006). The fate and effect of oxytetracycline during the anaerobic digestion of manure from therapeutically treated calves. Process Biochemistry, 41, 1637–1643.

    Article  CAS  Google Scholar 

  13. Arikan, O. A., Sikora, L. J., Mulbry, W., Khan, S. U., & Foster, G. D. (2007). Composting rapidly reduces levels of extractable oxytetracycline in manure from therapeutically treated beef calves. Bioresource Technology, 98, 169–176.

    Article  CAS  Google Scholar 

  14. Arikan, O. A. (2008). Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves. Journal of Hazardous Materials, 158(2–3), 485–490.

    Article  CAS  Google Scholar 

  15. Stone, J. J., Clay, S. A., Zhu, Z., Wong, K. L., Porath, L. R., & Spellman, G. M. (2009). Effect of antimicrobial compounds tylosin and chlortetracycline during batch anaerobic swine manure digestion. Water Research, 43, 4740–4750.

    Article  CAS  Google Scholar 

  16. Wu, X., Wei, Y., Zheng, J., Zhao, X., Zhong, W. (2011). The behavior of tetracyclines and their degradation products during swine manure composting. Bioresource Technology 102, 5924e5931.

  17. Jacobs, M. R., Felmingham, D., Appelbaum, P. C., Grüneberg, R. N., & Alexander Project Group. (2003). The Alexander Project 1998–2000: susceptibility of pathogens isolated from community-acquired respiratory tract infection to commonly used antimicrobial agents. Journal of Antimicrobial Chemotherapy, 52(2), 229–246.

    Article  CAS  Google Scholar 

  18. Prado, N., Ochoa, J., & Amrane, A. (2009). Biodegradation and biosorption of tetracycline and tylosin antibiotics in activated sludge system. Process Biochemistry, 44, 1302–1306.

    Article  CAS  Google Scholar 

  19. Ingerslev, F., Torang, L., Loke, M. L., Halling-Sorensen, B., & Nyholm, N. (2001). Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere, 44(4), 865–872.

    Article  CAS  Google Scholar 

  20. Gartiser, S., Urich, E., Alexy, R., & Kümmerer, K. (2007). Ultimate biodegradation and elimination of antibiotics in inherent tests. Chemosphere, 67, 604–613.

    Article  CAS  Google Scholar 

  21. Cetecioglu, Z., Ince, B., Gros, M., Rodriguez-Mozaz, S., Barcelo, D., Orhon, D., et al. (2013). Chronic impact of tetracycline on the biodegradation of an organic substrate mixture under anaerobic conditions. Water Research, 9(47), 2959–2969.

    Article  Google Scholar 

  22. Anaerobic biodegradability of organic compounds in digested sludge—method by measurement of gas production (OECD 311) (200610). OECD-Organization for Economic Co-operation and Development, France.

  23. Ritmann, B. E., & Mc Carty, P. L. (2001). Environmental biotechnology: principles and applications (1st ed.). U.S.A.: Mc Graw Hill. 2001.

    Google Scholar 

  24. Lane, D. J. (1991). 16S/23S rRNA sequencing, nucleic acid techniques in bacterial systematics (pp. 205–248). England: Wiley.

    Google Scholar 

  25. Takai, K., & Horikoshi, K. (2000). Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Applied Environmental Microbiology, 66, 5066–5072.

    Article  CAS  Google Scholar 

  26. Sawayama, S., Tsukahara, K., & Yagishita, T. (2006). Phylogenetic description of immobilized methanogenic community using real-time PCR in a fixed-bed anaerobic digester. Bioresource Technology, 97, 69–76.

    Article  CAS  Google Scholar 

  27. Geets, J., Borremans, B., Diels, L., Springael, D., Vangronsveld, J., Van der Lelie, D., et al. (2005). DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. Journal of Microbiological Methods, 66, 194–205.

    Article  Google Scholar 

  28. Gartiser, S., Urich, E., Alexy, R., & Kummerer, K. (2007). Anaerobic inhibition and biodegradation of antibiotics in ISO test schemes. Chemosphere, 66, 1839–1848.

    Article  CAS  Google Scholar 

  29. Alexy, R., Scholl, A., & Kummerer, K. (2004). Elimination and degradability of 18 antibiotics studied with simple tests. Chemosphere, 57, 505–512.

    Article  CAS  Google Scholar 

  30. Cetecioglu, Z., Ince, B., Orhon, D., & Ince, O. (2012). Acute inhibitory impact of antimicrobials on acetoclastic methanogenic activity. Bioresource Technology, 114, 109–116.

    Article  CAS  Google Scholar 

  31. Loftin, K. A., Henny, C., Adams, C. D., Surampali, R., & Mormile, M. R. (2005). Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate. Environmental Toxicology and Chemistry, 24(4), 782–788.

    Article  CAS  Google Scholar 

  32. Iwane, T., Urase, T., & Yamamoto, K. (2001). Possible impact of treated wastewater discharge on incidence of antibiotic resistant bacteria in river water. Water Science and Technology, 43, 91–99.

    CAS  Google Scholar 

  33. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H., & Stackebrandt, E. (2006). The prokaryotes (3rd ed.). USA: Springer.

    Book  Google Scholar 

  34. Sanz, J. L., Rodriguez, N., & Amils, R. (1996). The action of antibiotics on the anaerobic digestion process. Applied Microbiology and Biotechnology, 46, 587–592.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by The Scientific and Technological Research Council of Turkey (TUBITAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeynep Cetecioglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cetecioglu, Z., Ince, B., Azman, S. et al. Biodegradation of Tetracycline Under Various Conditions and Effects on Microbial Community. Appl Biochem Biotechnol 172, 631–640 (2014). https://doi.org/10.1007/s12010-013-0559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0559-6

Keywords

Navigation