Skip to main content
Log in

The Use of Immobilized Cytochrome P4502C9 in PMMA-Based Plug Flow Bioreactors for the Production of Drug Metabolites

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cytochrome P450 enzymes play a key role in the metabolism of pharmaceutical agents. To determine metabolite toxicity, it is necessary to obtain P450 metabolites from various pharmaceutical agents. Here, we describe a bioreactor that is made by immobilizing cytochrome P450 2C9 (CYP2C9) to a poly(methyl methacrylate) surface and, as an alternative to traditional chemical synthesis, can be used to biosynthesize P450 metabolites in a plug flow bioreactor. As part of the development of the CYP2C9 bioreactor, we have studied two different methods of attachment: (1) coupling via the N-terminus using N-hydroxysulfosuccinimide 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and (2) using the Ni(II) chelator 1-acetato-4-benzyl-triazacyclononane to coordinate the enzyme to the surface using a C-terminal histidine tag. Additionally, the propensity for metabolite production of the CYP2C9 proof-of-concept bioreactors as a function of enzyme attachment conditions (e.g., time and enzyme concentration) was examined. Our results show that the immobilization of CYP2C9 enzymes to a PMMA surface represents a viable and alternative approach to the preparation of CYP2C9 metabolites for toxicity testing. Furthermore, the basic approach can be adapted to any cytochrome P450 enzyme and in a high-throughput, automated process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guengerich, F. P. (1991). Journal of Biological Chemistry, 266, 10019–10022.

    CAS  Google Scholar 

  2. Hvastkovs, E. G., Schenkman, J. B., & Rusling, J. F. (2012). Annual Review of Analytical Chemistry, 5, 79–105.

    Article  CAS  Google Scholar 

  3. Guengerich, F. P. (2006). The AAPS Journal, 8, E101–E111.

    Article  CAS  Google Scholar 

  4. Kumar, G. N., & Surapaneni, S. (2001). Medicinal Research Reviews, 21, 397–411.

    Article  CAS  Google Scholar 

  5. Baillie, T. A., Cayen, M. N., Fouda, H., Gerson, R. J., Green, J. D., Grossman, S. J., Klunk, L. J., LeBlanc, B., Perkins, D. G., & Shipley, L. A. (2002). Toxicology and Applied Pharmacology, 182, 188–196.

    Article  CAS  Google Scholar 

  6. Li, A. P. (2001). Drug Discovery Today, 6, 357–366.

    Article  CAS  Google Scholar 

  7. Manyike, P. T., Kharasch, E. D., Kalhorn, T. F., & Slattery, J. T. (2000). Clinical Pharmacology and Therapeutics, 67, 275–282.

    Article  CAS  Google Scholar 

  8. Iverson, S. L., & Uetrecht, J. P. (2001). Chemical Research in Toxicology, 14, 175–181.

    Article  CAS  Google Scholar 

  9. Stepan, A. F., Walker, D. P., Bauman, J., Price, D. A., Baillie, T. A., Kalgutkar, A. S., & Aleo, M. D. (2011). Chemical Research in Toxicology, 24, 1345–1410.

    Article  CAS  Google Scholar 

  10. Sanderson, J., Naisbitt, D., & Park, B. (2006). The AAPS Journal, 8, E55–E64.

    Article  CAS  Google Scholar 

  11. Kim, M.-J., Kim, H., Chu, I.-J., Park, J.-S., Shon, J.-H., Liu, K.-H., & Shin, J.-G. (2005). Rapid Commun in Mass Spectrometry, 19, 2651–2658.

    Article  CAS  Google Scholar 

  12. Loida, P. J., Sligar, S. G., Paulsen, M. D., Arnold, G. E., & Ornstein, R. L. (1995). Journal of Biological Chemistry, 270, 5326–5330.

    Article  CAS  Google Scholar 

  13. Koeller, K. M., & Wong, C.-H. (2001). Nature, 409, 232–240.

    Article  CAS  Google Scholar 

  14. Urlacher, V. B., & Eiben, S. (2006). Trends in Biotechnology, 24, 324–330.

    Article  CAS  Google Scholar 

  15. Meunier, B., de Visser, S. P., & Shaik, S. (2004). Chemical Reviews, 104, 3947–3980.

    Article  CAS  Google Scholar 

  16. Li, Q.-S., Ogawa, J., Schmid, R. D., & Shimizu, S. (2005). Bioscience, Biotechnology, and Biochemistry, 69, 293–300.

    Article  CAS  Google Scholar 

  17. Nagel, B., Dellweg, H., & Gierasch, L. M. (1992). Pure and Applied Chemistry, 64, 143–168.

    Article  CAS  Google Scholar 

  18. Estavillo, C., Lu, Z., Jansson, I., Schenkman, J. B., & Rusling, J. F. (2006). Biophysical Chemistry, 104, 291–296.

    Article  Google Scholar 

  19. Fantuzzi, A., Capria, E., Mak, L. H., Dodhia, V. R., Sadeghi, S. J., Collins, S., Somers, G., Huq, E., & Gilardi, G. (2010). Analytical Chemistry, 82, 10222–10227.

    Article  CAS  Google Scholar 

  20. Krishnan, S., Wasalathanthri, D., Zhao, L., Schenkman, J. B., & Rusling, J. F. (2011). Journal of the American Chemical Society, 133, 1459–1465.

    Article  CAS  Google Scholar 

  21. Xu, X., Wei, W., Huang, M., Yao, L., & Liu, S. (2012). Chemical Communications, 48, 7802–7804.

    Article  CAS  Google Scholar 

  22. Yang, M., Kabulski, J. L., Wollenberg, L., Chen, X., Lederman, D., Tracy, T. S., Gannett, P. M., & Wu, N. (2009). Drug Metabolism and Disposition, 37, 892–899.

    Article  CAS  Google Scholar 

  23. Zhang, Z, Perozziello, G, Boccazzi, P, Sinskey, AJ, Geschke, O, Jensen, KF. (2007). Microbioreactors for bioprocess development. JALA 12(3), 143–151.

    Google Scholar 

  24. Pasirayi, G., Auger, V., Scott, S. M., Rhaman, P. K. S. M., Islam, M., O’Hare, L., & Ali, Z. (2011). Microbiologica Nanosys, 3, 137–160.

    Article  CAS  Google Scholar 

  25. Eibl, R., Kaiser, S., Lombriser, R., & Eibl, D. (2010). Applied Microbiology and Biotechnology, 86, 41–49.

    Article  CAS  Google Scholar 

  26. Nelson, M. I., Balakrishnan, E., & Sidhu, H. S. (2012). Chemical Engineering Communications, 199, 417–433.

    Article  CAS  Google Scholar 

  27. Santek, B., Ivancic, M., Horvat, P., Novak, S., & Maric, V. (2006). Chemical and Biochemical Engineering Quarterly, 20, 389–399.

    CAS  Google Scholar 

  28. Hao, D. C., Zhu, P. H., Yang, S. L., & Yang, L. (2006). World Journal of Microbiology and Biotechnology, 22, 1169–1176.

    Article  CAS  Google Scholar 

  29. Vail, R. B., Homann, M. J., Hanna, I., & Zaks, A. (2005). Journal of Industrial Microbiology and Biotechnology, 32, 67–74.

    Article  CAS  Google Scholar 

  30. Zhang, D. L., Zhang, H. Y., Aranibar, N., Hanson, R., Huang, Y., Cheng, P. T., Wu, S., Bonacorsi, S., Zhu, M. S., Swaminathan, A., & Humphreys, W. G. (2006). Drug Metabolism and Disposition, 34, 267–280.

    Article  CAS  Google Scholar 

  31. Rushmore, T. H., Reider, P. J., Slaughter, D., Assang, C., & Shou, M. (2000). Metabolic Engineering, 2, 115–125.

    Article  CAS  Google Scholar 

  32. Bader, A., Fruhauf, N., Zech, K., Haverich, A., & Borlak, J. T. (1998). Xenotransplantation, 28, 815–825.

    CAS  Google Scholar 

  33. De Bartolo, L., Salerno, S., Curcio, E., Piscioneri, A., Rende, M., Morelli, S., Tasselli, F., Bader, A., & Drioli, E. (2009). Biomaterials, 30, 2531–2543.

    Article  Google Scholar 

  34. van Liempd, S. M., Kool, J., Reinen, J., Schenk, T., Meerman, J. H., Irth, H., & Vermeulen, N. P. (2005). Journal of Chromatography A, 1075, 205–212.

    Article  Google Scholar 

  35. van Liempd, S. M., Kool, J., Meerman, J. H., Irth, H., & Vermeulen, N. P. (2007). Chemical Research in Toxicology, 20, 1825–1832.

    Article  Google Scholar 

  36. Nicoli, R., Bartolini, M., Rudaz, S., Andrisano, V., & Veuthey, J.-L. (2008). Journal of Chromatography A, 1206, 2–10.

    Article  CAS  Google Scholar 

  37. Gannett, P. M., Kabulski, J., Perez, F. A., Liu, Z., Lederman, D. L., Locuson, C. W., Ayscue, R. R., Thomsen, N. M., & Tracy, T. S. (2006). Journal of the American Chemical Society, 128, 8374–8375.

    Article  CAS  Google Scholar 

  38. Locuson, C. W., Gannett, P. M., & Tracy, T. S. (2006). Archives of Biochemistry and Biophysics, 449, 115–129.

    Article  CAS  Google Scholar 

  39. Johnson, D. L., & Martin, L. L. (2005). Journal of the American Chemical Society, 127, 2018–2019.

    Article  CAS  Google Scholar 

  40. Locuson, C. W., Wienkers, L. C., Jones, J. P., & Tracy, T. S. (2007). Drug Metabolism and Disposition, 35, 1174–1181.

    Article  CAS  Google Scholar 

  41. Sandhu, P., Guo, Z., Baba, T., & Martin, M. V. (1994). Archives of Biochemistry and Biophysics, 309, 168–177.

    Article  CAS  Google Scholar 

  42. Wollenberg, L. A., Jett, J. E., Wu, Y., Flora, D. R., Wu, N., Tracy, T. S., and Gannett, P. M. (2012) Nanotechnology 23, 385101 (9 pp).

  43. Osorio-Lozada, A., Surapaneni, S., Skiles, G. L., & Subramanian, R. (2008). Drug Metabolism and Disposition, 36, 234–240.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided through NIH GM081348 as well as the WVEPSCOR (HEPC.dsr.09.013) graduate student fellowships in STEM to JK and LW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Gannett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wollenberg, L.A., Kabulski, J.L., Powell, M.J. et al. The Use of Immobilized Cytochrome P4502C9 in PMMA-Based Plug Flow Bioreactors for the Production of Drug Metabolites. Appl Biochem Biotechnol 172, 1293–1306 (2014). https://doi.org/10.1007/s12010-013-0537-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0537-z

Keywords

Navigation