Skip to main content
Log in

Characteristics of a High Maltose-Forming, Acid-Stable, and Ca2+-Independent α-amylase of the Acidophilic Bacillus acidicola

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The purified acidic α-amylase of Bacillus acidicola is a monomer of 66.0 kDa, optimally active at pH 4.0 and 60 °C. The enzyme is Ca2+ independent with T 1/2 for 18 min at 80 °C. The K m, V max, and catalytic efficiency (k cat/K m) of the enzyme are 1.6 mg mL−1, 23.8 μmol mg−1 min−1, and 981 μmol s−1, respectively. Among detergents, Tween 20, 40, and 80 stimulated enzyme activity, whereas sodium dodecyl sulfate and Triton X-100 inhibited even at low concentration. EGTA has not affected the activity, whereas EDTA β-mercaptoethanol, iodoacetic acid, and Dithiothreitol exhibited a slight inhibitory action. Phenylmethanesulfonyl fluoride, N-bromosuccinimide, and Hg2+ strongly inhibited enzyme activity. The experimental activation energy and temperature quotient are 50.12 kJ mol−1 and 1.37. When thermodynamic parameters (ΔH and ΔS) of the enzyme have been determined at different temperatures, ΔG is positive suggesting that the enzyme is thermostable. The enzyme hydrolyzes raw starches, and therefore, the enzyme finds application in raw starch saccharification at sub-gelatinization temperatures that saves energy needed for gelatinization of raw starch at 105 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sanchez, S., & Demain, A. L. (2010). Organic Process Research & Development, 15, 224–230.

    Article  Google Scholar 

  2. Rao, M. B., Tanksale, A. M., Gathe, M. S., & Deshpande, V. V. (1998). Microbiology and Molecular Biology Reviews, 62(3), 597–635.

    CAS  Google Scholar 

  3. Sharma, A., & Satyanarayana, T. (2010). Biotechnology Letters, 32, 1503–1507.

    Article  CAS  Google Scholar 

  4. Sharma, A., & Satyanarayana, T. (2012). Extremophiles, 16, 515–522.

    Article  CAS  Google Scholar 

  5. Sharma, A., & Satyanarayana, T. (2011). Journal of Bioscience and Bioengineering, 111, 550–553.

    Article  CAS  Google Scholar 

  6. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  7. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  8. Kapat, A., & Panda, T. (1997). Bioprocess and Biosystems Engineering, 16, 269–272.

    Article  CAS  Google Scholar 

  9. Gohel, V., & Naseby, D. C. (2007). Biochemical Engineering Journal, 16, 57–67.

    Google Scholar 

  10. Ali, M. B., Mhiri, S., Mezghani, M., & Bejar, S. (2001). Enzyme and Microbial Technology, 28, 537–542.

    Article  Google Scholar 

  11. Aguilar, G., Morlon-Guyot, J., Trejo-Aguilar, B., & Guyot, J. P. (2000). Enzyme and Microbial Technology, 27, 406–413.

    Article  CAS  Google Scholar 

  12. Mehta, D., & Satyanarayana, T. (2013). Journal of Molecular Catalysis B: Enzymatic, 85–86, 229–238.

    Article  Google Scholar 

  13. Prieto, J. A., Bort, B. R., Martinez, J., Randez-Gil, F., Buesa, C., & Sanz, P. (1995). Biochemistry and Cell Biology, 73, 41–49.

    Article  CAS  Google Scholar 

  14. Manning, G. B., & Campbell, L. L. (1961). Journal of Biological Chemistry, 236, 2952–2957.

    CAS  Google Scholar 

  15. Bai, Y., Huang, H., Meng, K., Shi, P., Yang, P., Luo, H., et al. (2012). Food Chemistry, 131, 1473–1478.

    Article  CAS  Google Scholar 

  16. Nguyen, Q. D., Judit, M., Szabo, R., Claeyssens, M., Stals, I., & Hoschke, A. (2002). Enzyme and Microbial Technology, 31, 345–352.

    Article  CAS  Google Scholar 

  17. Asoodeh, A., Chamani, J., & Lagzian, M. (2010). International Journal of Biological Macromolecules, 46, 289–297.

    Article  CAS  Google Scholar 

  18. Savchenko, A., Vieille, C., Kang, S., & Zeikus, G. (2002). Biochemistry, 41, 6193–6201.

    Article  CAS  Google Scholar 

  19. Ali, M. B., Mezghani, M., & Bejar, S. (1999). Enzyme and Microbial Technology, 24, 584–589.

    Article  Google Scholar 

  20. Robyt, J., & Ackerman, R. J. (1971). Archives of Biochemistry and Biophysics, 145, 105–114.

    Article  CAS  Google Scholar 

  21. Fogarty, W. M., & Kelly, C. T. (1980). In A. H. Rose (Ed.), Microbial Enzymes and Bioconversions (pp. 115–170). London: Academic Press.

    Google Scholar 

  22. Chary, S. J., & Reddy, S. M. (1985). Folia Microbiologica, 30, 452–457.

    Article  CAS  Google Scholar 

  23. Giri, N. Y., Mohan, A. R., Rao, L. V., & Rao, C. P. (1990). Current Science, 59, 1339–1340.

    CAS  Google Scholar 

  24. Dey, G., Palit, S., Banerjee, R., & Maiti, B. R. J. (2002). Industrial Microbiology and Biotechnology, 28, 193–200.

    Article  CAS  Google Scholar 

  25. Liu, W., Shi, P., Chen, Q., Yang, P., Wang, G., Wang, Y., et al. (2010). Applied Biochemistry and Biotechnology, 162, 1–12.

    Article  CAS  Google Scholar 

  26. Kumar, V., & Satyanarayana, T. (2011). Biotechnology Letters, 33, 2279–2285.

    Article  CAS  Google Scholar 

  27. Singh, B., & Satyanarayana, T. (2009). Bioresource Technology, 100, 2046–51.

    Article  CAS  Google Scholar 

  28. Bai, Y., Huang, H., Meng, K., Shi, P., Yang, P., Luo, H., et al. (2012). Food Chemistry, 131, 1473–1478.

    Article  CAS  Google Scholar 

  29. Kapoor, M., Beg, Q. K., Bhushan, B., Dadhich, K. S., & Hoondal, G. S. (2000). Process Biochemistry, 36, 467–473.

    Article  CAS  Google Scholar 

  30. Perez-Pomares, F., Bautista, V., Ferrer, J., Pir, C., Marhuendra-Egea, F. C., & Bonete, M. J. (2003). Extremophiles, 7, 299–306.

    Article  CAS  Google Scholar 

  31. Antranikian, G. (1992). In: Winkelmann (Ed.), Microbial degradation of natural products (pp. 27–56). Weinheim, Germany: VCH.

  32. Liu, B., Wang, Y., & Zhang, X. (2006). Enzyme and Microbial Technology, 39, 805–810.

    Article  CAS  Google Scholar 

  33. Ballschmiter, M., Futterer, O., & Liebl, W. (2006). Applied and Environmental Microbiology, 72, 2206–2211.

    Article  CAS  Google Scholar 

  34. Rao, J. L. U. M., & Satyanarayana, T. (2007). Applied Biochemistry and Biotechnology, 142, 179–193.

    Article  CAS  Google Scholar 

  35. Paoli, P., Fiaschi, T., Cirri, P., Camici, G., Manao, G., Cappugi, G., et al. (1997). Biochemistry Journal, 328, 855–861.

    CAS  Google Scholar 

  36. Chauthaiwale, J., & Rao, M. (1994). Biochemistry Biophysica Acta, 1204, 164–168.

    Article  CAS  Google Scholar 

  37. Komissarov, A. A., Romanova, D. V., & Debabov, V. G. (1995). Journal of Biological Chemistry, 270, 10050–10055.

    Article  CAS  Google Scholar 

  38. Asoodeh, A., Chamani, J., & Lagzian, M. (2010). International Journal of Biological Macromolecules, 46, 289–297.

    Article  CAS  Google Scholar 

  39. Spencer-Martins, I., & Van Uden, N. (1979). European Journal of Applied Microbiology and Biotechnology, 6, 241–250.

    Article  CAS  Google Scholar 

  40. Kanno, M. (1986). Agricultural and Biological Chemistry, 50, 2633–2635.

    Article  CAS  Google Scholar 

  41. Bernfeld, P. (1955). In: I. S. P. Colowich, & N. O. Kaplan (Eds.), Methods in enzymology (pp. 149–158). New York: Academic.

  42. Maisuria, V. B., Patel, V. A., & Nerurkar, A. S. (2010). Journal of Microbiology and Biotechnology, 20, 1077–85.

    Article  CAS  Google Scholar 

  43. Kolawole, A. O., Ajele, J. O., & Sirdeshmukh, R. (2011). Process Biochemistry, 46, 2178–86.

    Article  CAS  Google Scholar 

  44. Muhammad, R., Raheela, P., Muhammad, J., Habibullah, N., & Muhammad, H. R. (2007). Enzyme and Microbial Technology, 41, 558–64.

    Article  Google Scholar 

  45. Kikani, B. A., & Singh, S. P. (2012). Process Biochemistry, 47, 1791–1798.

    Article  CAS  Google Scholar 

  46. Gubern, G., Canalias, F., Gella, F. J., Colinet, E., Profilis, C., Calam, H., et al. (1996). Clinica Chimica Acta, 252, 145–162.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial assistance from the Department of Science and Technology (DST) and Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi during the course of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Satyanarayana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A., Satyanarayana, T. Characteristics of a High Maltose-Forming, Acid-Stable, and Ca2+-Independent α-amylase of the Acidophilic Bacillus acidicola . Appl Biochem Biotechnol 171, 2053–2064 (2013). https://doi.org/10.1007/s12010-013-0501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0501-y

Keywords

Navigation