Skip to main content
Log in

Comparative Antioxidant Study of Stem and Stem Induced Callus of Phyllanthus fraternus Webster—An Important Antiviral and Hepatoprotective Plant

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Phyllanthus fraternus is widely used in the cure of various liver diseases and possess antiviral properties especially against hepatitis virus. In the present study, evaluation of the antioxidant activity of stem and calli induced from stem has been done by different assays. Extraction was done by standard method in water and ethanol. Total antioxidant capacity was measured by 1, 1-diphenyl-2-picrylhydrazyl free radical scavenging method. Lipid peroxidation was measured in terms of thiobarbituric acid-reactive substances (TBARS) by using egg yolk homogenates as lipid-rich media, and superoxide radical scavenging activity was measured using riboflavin–light–nitro blue tetrazolium assay. Reducing power was determined on the basis of Fe3+–Fe2+ transformation in the presence of the extract. In addition to the antioxidant activity, polyphenolic compounds like total phenolics and flavonoids were also measured by spectroscopic method. Results showed that the ethanolic extract of stem is more potent in antioxidant activity than its aqueous extract and ethanolic extract of calli. A significant correlation between antioxidant capacity and polyphenolic content and reducing potential was observed, indicating that phenolic compounds and reducers present in extract are major contributors to the antioxidant potential. Thus, this plant extract could be used as a potent natural antioxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

DPPH:

1, 1-Diphenyl-2-picrylhydrazyl

TP:

Total phenolics

TF:

Total flavonoids

References

  1. Gutteridge, J. M. C. (1995). Clinical Chemistry, 41, 1819–1828.

    CAS  Google Scholar 

  2. Halliwell, B. (1995). American Journal of Medicine, 91, 14–22.

    Article  Google Scholar 

  3. Aruoma, O. I. (1998). Journal of American Oil Chemists Society, 75, 199–212.

    Article  CAS  Google Scholar 

  4. Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Chemico Biological Interactions, 160, 1–40.

    Article  CAS  Google Scholar 

  5. Eastwood, M. A. (1999). Quarterly Journal of Medicine, 92, 527–530.

    Article  CAS  Google Scholar 

  6. Ndhlala, A. R., Kasiyamhuru, A., Mupure, C., Chitindingu, K., Benhura, M. A., & Muchuweti, M. (2007). Food Chemistry, 103, 82–87.

    Article  CAS  Google Scholar 

  7. Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P., & Vidal, N. (2006). Food Chemistry, 97, 654–660.

    Article  CAS  Google Scholar 

  8. Jayaprakash, G. K., & Rao, L. J. (2000). Z Naturforsch, 55, 1018–1022.

    Google Scholar 

  9. Abedin, S., Mossa, J.S., AI-Said, M.S., AI-Yahya, M.A. (2001). In S.A. Chaudhary (ed.) Flora of Kingdom of Saudi Arabia, p. 298. Riyadh: National Agriculture and Water Research Centre

  10. Hukkeri, V. I., Kalyani, G. A., & Kakrani, H. K. (1998). Fitoterapia, 59, 68–70.

    Google Scholar 

  11. Kalyani, B., Shekshavali, T., Vishwanatha Swamy, K. M., & Ram Chandra Setty, S. (2010). Pharmacologyonline, 3, 164–173.

    Google Scholar 

  12. Chopade, A. R., & Sayyad, F. J. (2012). Asian Pacific Journal of Tropical Biomedicine, 1–4.

  13. Koffuor, G. A., & Amoateng, P. (2011). Journal of Pharmacology and Toxicology, 6, 624–636.

    Article  Google Scholar 

  14. Lin, J., Opoku, A. R., Geheeb-Keller, M., Hutchings, A. D., Terblanche, S. E., Jageran, A. K., & Staden, J. V. (1999). Journal of Ethnopharmacology, 68, 267–274.

    Article  CAS  Google Scholar 

  15. Braca, A., Tommasi, N. D., Bari, L. D., Pizza, C., Politi, M., & Morelli, I. (2001). Journal of Natural Products, 64, 892–895.

    Article  CAS  Google Scholar 

  16. Ohkowa, H., Ohisi, N., & Yagi, K. (1979). Analytical Biochemistry, 95, 3513–3558.

    Google Scholar 

  17. Ruberto, G., Baratta, M. T., Deans, S. G., & Dorman, H. J. D. (2000). Planta Medica, 66, 687–693.

    Article  CAS  Google Scholar 

  18. Janero, D. R. (1990). Free Radical Biology & Medicine, 9, 515–540.

    Article  CAS  Google Scholar 

  19. Beauchamp, C., & Fridovich, I. (1971). Analytical Biochemistry, 44, 276–287.

    Article  CAS  Google Scholar 

  20. Oyaizu, M. (1986). Japanese Journal of Nutrition, 44, 307–315.

    Article  CAS  Google Scholar 

  21. Lister, E., & Wilson, P. (2001). Measurement of total phenolics and ABTS assay for antioxidant activity. Lincoln, New Zealand: Crop Research Institute.

  22. Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Journal of Food and Drug Analysis, 10, 178–182.

    CAS  Google Scholar 

  23. Korycka-Dahl, M., & Richardson, T. (1978). Journal of Dairy Science, 61, 400–407.

    Article  CAS  Google Scholar 

  24. Halliwell, B., & Aruoma, O. I. (1991). FEBS Letter, 281, 9–19.

    Article  CAS  Google Scholar 

  25. Meir, S., Joseph Kanner, J., Bezalel Akiri, B., & Sonia Philosoph-Hadas, S. (1995). Journal of Agriculture and Food Chemistry, 43, 1813–1819.

    Article  CAS  Google Scholar 

  26. Diplock, A. T. (1997). Free Radical Research, 27, 511–532.

    Article  CAS  Google Scholar 

  27. Havesteen, B. (1983). Biochemistry and Pharmacology, 32, 1141–1148.

    Article  Google Scholar 

  28. Hatano, T., Edamatsu, R., Mori, A., Fujita, Y., & Yasuhara, E. (1989). Chemical and Pharmaceutical Bulletin, 37, 2016–2021.

    Article  CAS  Google Scholar 

  29. Sharma, V., & Ramawat, K. G. (2013). 3 Biotech, 3, 11–17.

    Article  Google Scholar 

  30. Chirinos, R., Pedreschi, R., Rogez, H., Larondelle, Y., & Campos, D. (2013). Industrial Crops and Products, 471, 45–152.

    Google Scholar 

  31. Koleva, I. I., Van, B. T. A., & Linssen, J. P. H. (2002). Phytochemical Analysis, 13, 8–17.

    Article  CAS  Google Scholar 

  32. Ahuja, M. R., Evens, D. A., Sharp, W. R., & Ammirato, P. J. (1986). Handbook of plant cell culture (pp. 626–651). New York: Macmillan.

    Google Scholar 

  33. Tahir, S. M., Victor, K., & Abdulkadir, S. (2011). Nigerian Journal of Basic and Applied Science, 19, 213–217.

    Google Scholar 

  34. Verpoote, R., Heijden, R. V. D., Hoge, H., & Hoopen, H. (1994). Pure Applied Chemistry, 66, 2307–2310.

    Article  Google Scholar 

  35. Tadhani, M. B., Patel, V. H., & Subhash, R. (2007). Journal of Food Composition and Analysis, 20, 323–329.

    Article  CAS  Google Scholar 

  36. Giri, L., Dhyania, P., Rawata, S., Bhatta, I. D., Nandia, S. K., Rawala, R. S., & Pande, V. (2012). Industrial Crops and Products, 39, 1–6.

    Article  CAS  Google Scholar 

  37. Hegazi, G. A. E. (2011). World Applied Science Journal, 14, 679–686.

    Google Scholar 

  38. Sharma, N., & Patni, V. (2013). International Journal of Pharma and Pharmaceutical Sciences, 5, 464–469.

    CAS  Google Scholar 

  39. Parsaeimehr, A., Sargsyan, E., & Javidni, K. (2010). Molecules, 15, 1668–1678.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R. Upadhyay is highly thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, for providing fellowship as senior research fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavindra Nath Tiwari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upadhyay, R., Chaurasia, J.K., Tiwari, K.N. et al. Comparative Antioxidant Study of Stem and Stem Induced Callus of Phyllanthus fraternus Webster—An Important Antiviral and Hepatoprotective Plant. Appl Biochem Biotechnol 171, 2153–2164 (2013). https://doi.org/10.1007/s12010-013-0487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0487-5

Keywords

Navigation