Skip to main content

Advertisement

Log in

Performance of a New Thermostable Mannanase in Breaking Guar-Based Fracturing Fluids at High Temperatures with Little Premature Degradation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A new thermostable β-1,4-mannanase (DtManB) cloned from Dictyoglomus thermophilum CGMCC 7283 showed the maximum activity towards hydroxypropyl guar gum at 80 °C, with a half-life of 46 h. DtManB exhibited good compatibility with various additives of fracturing fluid, retaining more than 50 % activity in all the cases tested. More importantly, premature degradation could be alleviated significantly when using DtManB as breaker, because at 27 and 50 °C it displayed merely 3.7 and 18.5 % activities compared to those at 80 °C. In a static test, 0.48 mg DtManB could break 200 mL borax cross-linked fracturing fluid dramatically at 80 °C, and merely 18 mPa s of the viscosity was detected even after the broken fluid was cooled down and only 161.4 mg L−1 of the residue was left after the enzymatic reaction. All these positive features demonstrate the great potential of this mannanase as a new enzyme breaker for application in enhanced recovery of petroleum oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Economides, M. J., Nolte, K. G., & Ahmed, U. (1989). Vol. 2, London: Prentice Hall.

  2. Hawkins, G. (1988). SPE annual technical conference and exhibition, Houston, Texas. Society of Petroleum Engineers, pp. 787–800.

  3. Pope, D., Leung, L. W., Gulbis, J., & Constien, V. (1996). Old Production Facility, 11, 230–237.

    CAS  Google Scholar 

  4. Brannon, H., & Pulsinelli, R. (1992). SPE Production Engineering, 7, 388–342.

    Article  Google Scholar 

  5. Hinkel, J. J. (1978). U.S. Pat. 4,250,044, The Dow Chemical Company, Midland, MI, United States.

  6. Armstrong, C. D. (2011). U.S. Pat. 8,058,212, Baker Hughes Incorporated, United States.

  7. Kelly, R. M., Khan, S. A., Leduc, P., Tayal, A., & Prud'homme, R. K. (2005). U.S. Pat. 6,936,454, North Carolina State University, United States.

  8. Moreira, L. R., & Filho, E. X. (2008). Applied Microbiology and Biotechnology, 79, 165–178.

    Article  CAS  Google Scholar 

  9. Cheng, Y., Brown, K. M., & Prud'homme, R. K. (2002). Biomacromolecules, 3, 456–461.

    Article  CAS  Google Scholar 

  10. Tjon-Joe-Pin, R. M. (1993). U.S. Pat. 5,201,370, BJ Services Company, United States.

  11. Duffaud, G. D., McCutchen, C. M., Leduc, P., Parker, K. N., & Kelly, R. M. (1997). Applied and Environmental Microbiology, 63, 169–177.

    CAS  Google Scholar 

  12. McCutchen, C. M., Duffaud, G. D., Leduc, P., Petersen, A. R. H., Tayal, A., Khan, S. A., & Kelly, R. M. (1996). Biotechnology and Bioengineering, 52, 332–339.

    Article  CAS  Google Scholar 

  13. Parker, K. N., Chhabra, S. R., Lam, D., Callen, W., Duffaud, G. D., Snead, M. A., Short, J. M., Mathur, E. J., & Kelly, R. M. (2001). Biotechnology and Bioengineering, 75, 322–333.

    Article  CAS  Google Scholar 

  14. Lüthi, E., Jasmat, N. B., Grayling, R. A., Love, D. R., & Bergquist, P. (1991). Applied and Environmental Microbiology, 57, 694–700.

    Google Scholar 

  15. Misak, M. D. (1975). U.S. Pat. 3,922,173, Halliburton Company, Duncan, OK, United States.

  16. Kim, D. Y., Ham, S. J., Lee, H. J., Cho, H. Y., Kim, J. H., Kim, Y. J., Shin, D. H., Rhee, Y. H., Son, K. H., & Park, H. Y. (2011). Bioresource Technology, 102, 9185–9192.

    Article  CAS  Google Scholar 

  17. Bradford, M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  18. Harris, P. (1993). Journal of Petroleum Technology, 45, 264–269.

    Article  CAS  Google Scholar 

  19. Ademark, P., Varga, A., Medve, J., Harjunpää, V., Drakenberg, T., Tjerneld, F., & Stålbrand, H. (1998). Journal of Biotechnology, 63, 199–210.

    Article  CAS  Google Scholar 

  20. Zhao, J., Shi, P., Luo, H. Y., Yang, P. L., Zhao, H., Bai, Y. G., Huang, H. Q., Wang, H., & Yao, B. (2010). Journal of Agricultural and Food Chemistry, 58, 3184–3190.

    Article  CAS  Google Scholar 

  21. Battistel, E., Bianchi, D., Fornaroli, M., & Cobianco, S. (2011). Journal of Petroleum Science and Technology, 77, 10–17.

    CAS  Google Scholar 

  22. Rogers, W. F. (1953). Houston: Gulf Publishing Co.

  23. Howard, S. K. (1995). SPE annual technical conference and exhibition, Dallas, Texas, USA. Society of Petroleum Engineers, pp. 483–496.

  24. Ruseska, I., Robbins, J., & Costerton, J. W. (1982). Oil & Gas Journal, 80, 253–264.

    CAS  Google Scholar 

  25. Walker, M. L., Shuchart, C. E., Yaritz, J. G., & Norman, L. R. (1995). SPE annual technical conference and exhibition, San Antonio, Texas, USA. Society of Petroleum Engineers, pp. 399–348.

  26. Arakawa, T., & Timasheff, S. N. (1984). Biochemistry, 23, 5912–5923.

    Article  CAS  Google Scholar 

  27. Whistler, R. L. (1959). New York: Academic

  28. Michael, Y. H., & William, I. W. (1996). U.S. Pat. 5,536, 825. Rhone-Poulenc., Cranbury, NJ, United States.

  29. Kim, D. Y., Ham, S. J., Lee, H. J., Kim, Y. J., Shin, D. H., Rhee, Y. H., Son, K. H., Son, K. H., & Park, H. Y. (2011). Enzyme and Microbial Technology, 48, 365–370.

    Article  CAS  Google Scholar 

  30. Bicho, P. A., Clark, T. A., Mackie, K., Morgan, H. W., & Daniel, R. M. (1991). Applied Microbiology and Biotechnology, 36, 337–343.

    Article  CAS  Google Scholar 

  31. Katrolia, P., Yan, Q. J., Zhang, P., Zhou, P., Yang, S. Q., & Jiang, Z. Q. (2013). Journal of Agricultural and Food Chemistry, 61, 394–401.

    Article  CAS  Google Scholar 

  32. Deuel, H., & Neukorn, H. (1949). Macromolecular Chemistry and Physics, 3, 13–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (nos. 21276082 and 31200050) and the Ministry of Science and Technology, China (no. 2011CB710800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Xiu Li or Jian-He Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, K., Li, CX., Pan, J. et al. Performance of a New Thermostable Mannanase in Breaking Guar-Based Fracturing Fluids at High Temperatures with Little Premature Degradation. Appl Biochem Biotechnol 172, 1215–1226 (2014). https://doi.org/10.1007/s12010-013-0484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0484-8

Keywords

Navigation