Skip to main content
Log in

Quantitative Analysis of Previously Identified Propionate-Oxidizing Bacteria and Methanogens at Different Temperatures in an UASB Reactor Containing Propionate as a Sole Carbon Source

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Propionate degradation is crucial for maintaining the efficiency and stability of an anaerobic reactor. However, there was little information about the effects of ecological factor on propionate-oxidizing bacteria (POB). In current research, quantitative real-time fluorescence polymerase chain reaction (QPCR) of some identified POB and methanogens with a decrease in temperature in an upflow anaerobic sludge bed (UASB) reactor containing propionate as sole carbon source was investigated. The results showed that there were at least four identified POB, including Pelotomaculum schinkii, Pelotomaculum propionicum, Syntrophobacter fumaroxidans, and Syntrophobacter sulfatireducens, observed in this UASB reactor. Among them, P. schinkii was dominated during the whole operational period. Its quantity was 1.2 × 104 16S rRNA gene copies per nanogram of DNA at 35 °C. A decrease in temperature from 35 to 30 °C led to P. schinkii to be increased by 1.8 times and then it was gradually reduced with a decrease in temperature from 30 to 25, 20, and 18 °C stepwise. A decrease in temperature from 35 to 20 °C did not make the amount of methanogens markedly changed, but hydrogenotrophic methanogens (Methanospirillum) and acetotrophic methanogens (Methanosaeta) at 18 °C were increased by an order of magnitude and 1.0 time, respectively, compared with other experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

UASB:

Upflow anaerobic sludge bed

CSTR:

Completely stirred tank reactor

ABR:

Anaerobic baffled reactor

COD:

Chemical oxygen demand

VFA:

Volatile fatty acids

PCR-DGGE:

Polymerase chain reaction-denaturing gradient gel electrophoresis

QPCR:

Quantitative real-time fluorescence polymerase chain reaction

POB:

Propionate-oxidizing bacteria

HRT:

Hydraulic retention time

References

  1. McCarty, P. L. (2001). Water Science and Technology, 44, 149–156.

    CAS  Google Scholar 

  2. Chae, K. J., Jang, A., Yim, S. K., & Kim, I. S. (2008). Bioresource Technology, 99, 1–6.

    Article  CAS  Google Scholar 

  3. Chen, S., Zamudio Canas, E. M., Zhang, Y., Zhu, Z., & He, Q. (2012). Journal of Applied Microbiology, 113, 1371–1379.

    Article  CAS  Google Scholar 

  4. Jha, A. K., Li, J., Nies, L., & Zhang, L. (2011). African Journal of Biotechnology, 10, 14242–14253.

    CAS  Google Scholar 

  5. Okabe, S., Oshiki, M., Kamagata, Y., Yamaguchi, N., Toyofuku, M., Yawata, Y., et al. (2010). Microbes and Environments, 25, 230–240.

    Article  Google Scholar 

  6. Ma, J., Mungoni, L. J., Verstraete, W., & Carballa, M. (2009). Bioresource Technology, 100, 3477–3482.

    Article  CAS  Google Scholar 

  7. Narihiro, T., Terada, T., Ohashi, A., Kamagata, Y., Nakamura, K., & Sekiguchi, Y. (2012). Water Research, 46, 2167–2175.

    Article  CAS  Google Scholar 

  8. Liu, R. R., Tian, Q., Yang, B., & Chen, J. H. (2010). International Journal of Environmental Science and Technology, 7, 111–118.

    Article  CAS  Google Scholar 

  9. Shah, B. A., Shah, A. V., & Singh, R. R. (2009). International Journal of Environmental Science and Technology, 6, 77–90.

    Article  CAS  Google Scholar 

  10. Li, J., Ban, Q., Zhang, L., & Jha, A. K. (2012). International Journal of Agriculture and Biology, 14, 843–850.

    CAS  Google Scholar 

  11. Liu, Y., Zhang, Y., Quan, X., Li, Y., Zhao, Z., Meng, X., et al. (2012). Chemical Engineering Journal, 192, 179–185.

    Article  CAS  Google Scholar 

  12. Zhang, L., Li, J., Ban, Q., He, J., & Jha, A. K. (2012). Journal of Microbiology and Biotechnology, 22, 668–673.

    Article  CAS  Google Scholar 

  13. Boone, D. R., & Bryant, M. P. (1980). Applied and Environmental Microbiology, 40, 626–632.

    CAS  Google Scholar 

  14. Nilsen, R. K., Torsvik, T., & Lien, T. (1996). International Journal of Systematic Bacteriology, 46, 397–402.

    Article  Google Scholar 

  15. Wallrabenstein, C., Hauschild, E., & Schink, B. (1995). Archives of Microbiology, 164, 346–352.

    Article  CAS  Google Scholar 

  16. Imachi, H., Sekiguchi, Y., Kamagata, Y., Harada, S., Ohashi, A., & Harada, H. (2002). International Journal of Systematic and Evolutionary Microbiology, 52, 1729–1735.

    Google Scholar 

  17. Liu, Y., Balkwill, D. L., Aldrich, H. C., Drake, G. R., & Boone, D. R. (1999). International Journal of Systematic Bacteriology, 49, 545–556.

    Article  CAS  Google Scholar 

  18. de Bok, F. A. M., Harmsen, H. J. M., Plugge, C. M., de Vries, M. C., Akkermans, A. D. L., de Vos, W. M., et al. (2005). International Journal of Systematic and Evolutionary Microbiology, 55, 1697–1703.

    Article  Google Scholar 

  19. Plugge, C. M., Balk, M., & Stams, A. J. M. (2002). International Journal of Systematic and Evolutionary Microbiology, 52, 391–399.

    CAS  Google Scholar 

  20. Shigematsu, T., Era, S., Mizuno, Y., Ninomiya, K., Kamegawa, Y., Morimura, S., et al. (2006). Applied Microbiology and Biotechnology, 72, 401–415.

    Article  CAS  Google Scholar 

  21. Ariesyady, H. D., Ito, T., Yoshiguchi, K., & Okabe, S. (2007). Applied Microbiology and Biotechnology, 75, 673–683.

    Article  CAS  Google Scholar 

  22. Leitão, R. C., van Haandel, A. C., Zeeman, G., & Lettinga, G. (2006). Bioresource Technology, 97, 1105–1118.

    Article  Google Scholar 

  23. El-Mashad, H.E.M.H. (2003). Ph.D. Thesis. Wageningen University.

  24. Borja, R., & Bank, C. J. (1995). Journal of Biotechnology, 36, 251–259.

    Article  Google Scholar 

  25. Ban, Q., Li, J., Zhang, L., Jha, A. K., Zhang, Y., & Ai, B. (2013). Journal of Microbiology and Biotechnology, 23(3), 382–389.

    Article  CAS  Google Scholar 

  26. Li, J., Zhang, L., Ban, Q., Jha, A. K., & Xu, Y. (2013). Journal of Microbiology and Biotechnology, 23(2), 137–143.

    Article  CAS  Google Scholar 

  27. Ban, Q., Li, J., Zhang, L., Jha, A. K., & Nies, L. (2013). Applied Biochemistry and Biotechnology, 169, 1822–1836.

    Article  CAS  Google Scholar 

  28. Li, J., Li, B., Zhu, G., Ren, N., Bo, L., & He, J. (2007). International Journal of Hydrogen Energy, 28, 3274–3283.

    Article  Google Scholar 

  29. APHA. (1995). Standard methods for the examination of water and wastewater. Washington: American Public Health Association (Ed).

    Google Scholar 

  30. Demirel, B., & Scherer, P. (2008). Reviews in Environmental Science and Biotechnology, 7, 173–190.

    Article  CAS  Google Scholar 

  31. Harmsen, H. J. M., van Kuijk, B. L. M., Plugge, C. M., Akkermans, A. D. L., de Vos, W. M., & Stams, A. J. M. (1998). International Journal of Systematic and Bacteriology, 48, 1383–1387.

    Article  CAS  Google Scholar 

  32. Chen, S., Liu, X., & Dong, X. (2005). International Journal of Systematic and Evolutionary Microbiology, 55, 1319–1324.

    Article  CAS  Google Scholar 

  33. Imachi, H., Sakai, S., Ohashi, A., Harada, H., Hanada, S., Kamagata, Y., et al. (2007). International Journal of Systematic and Evolutionary Microbiology, 57, 1487–1492.

    Article  Google Scholar 

  34. Lovley, D. R., & Klug, M. J. (1982). Applied and Environmental Microbiology, 43, 552–560.

    CAS  Google Scholar 

  35. Liu, Y., & Whitman, W. B. (2008). Annals of the New York Academy of Sciences, 1125, 171–189.

    Article  CAS  Google Scholar 

  36. Ferry, J. G., Smith, P. H., & Wolfe, R. S. (1974). International Journal of Systematic Bacteriology, 24, 465–469.

    Article  CAS  Google Scholar 

  37. O’Reilly, J., Lee, C., Collins, G., Chinalia, F., Mahony, T., & O’Flaherty, V. (2009). Water Research, 43, 3365–3374.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (No. 2013DX11) and National Natural Science Foundation of China (No. 51178136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaoying Ban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ban, Q., Li, J., Zhang, L. et al. Quantitative Analysis of Previously Identified Propionate-Oxidizing Bacteria and Methanogens at Different Temperatures in an UASB Reactor Containing Propionate as a Sole Carbon Source. Appl Biochem Biotechnol 171, 2129–2141 (2013). https://doi.org/10.1007/s12010-013-0465-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0465-y

Keywords

Navigation