Advertisement

Applied Biochemistry and Biotechnology

, Volume 171, Issue 7, pp 1701–1714 | Cite as

Combined Mesophilic Anaerobic and Thermophilic Aerobic Digestion Process: Effect on Sludge Degradation and Variation of Sludge Property

  • Jiehong ChengEmail author
  • Yuehong Ji
  • Feng Kong
  • Xian Chen
Article

Abstract

One-stage autothermal thermophilic aerobic digestion (ATAD) is effective for the reduction of volatile solids (VSs) and pathogen in sewage sludges. A novel process of combining mesophilic (<35 °C) anaerobic digestion with a thermophilic (55 °C) aerobic digestion process (AN/TAD) occurred in a one-stage digester, which was designed for aeration energy savings. The efficiency of sludge degradation and variation of sludge properties by batch experiments were evaluated for the AN/TAD digester with an effective volume of 23 L for 30 days compared with conventional thermophilic aerobic digestion (TAD). The AN/TAD system can efficiently achieve sludge stabilization on the 16th day with a VS removal rate of 38.1 %. The AN/TAD system was operated at lower ORP values in a digestion period with higher contents of total organic compounds, volatile fatty acids, protein, and polysaccharide in the soluble phase than those of the TAD system, which can rapidly decreased and had low values in the late period of digestion for the AN/TAD system. In the AN/TAD system, intracellular substances had lysis because of initial hydrolytic acidification.

Keywords

Sewage sludge Anaerobic digestion Thermophilic aerobic digestion Biodegradation Cell lysis 

Notes

Acknowledgments

This study was supported by Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-aged Teachers and Presidents, the Item of Jiangsu Province “333 Hi-class personnel training project” (no. BRA2011185), and the Environmental Protection Agency of Jiangsu Province (no. 2008020).

References

  1. 1.
    Kelly, H. G., Melcer, H., & Mavinic, D. S. (1993). Water Environment Research, 65, 849–861.CrossRefGoogle Scholar
  2. 2.
    Schwinning, H. G., Deeny, K. J., & Hong, S. N. (1997). Proceedings of the 70th Water Environment Federation Annual Conference and Exposition, Chicago, IL, USA.Google Scholar
  3. 3.
    Pagilla, K., Kim, H., & Cheunbarn, T. (2000). Water Research, 34, 2747–2753.CrossRefGoogle Scholar
  4. 4.
    Kelly, H. G., & Mavinic, D. S. (2003). WEFTEC 2003 Workshop W104 Thermophilic Digestion, Los Angeles.Google Scholar
  5. 5.
    Layden, M. N., Mavinic, D. S., Kelly, H. G., Moles, R., & Bartlett, J. (2007). Journal of Environmental Engineering and Science, 6, 665–678.CrossRefGoogle Scholar
  6. 6.
    Nosrati, M., Sreekrishnan, T. R., & Mukhopadhyay, S. N. (2007). Journal of Environmental Engineering, 133, 477–484.CrossRefGoogle Scholar
  7. 7.
    Cheng, J. H. (2006). The Study of Sewage Sludge Treatment by Autothermal Thermophilic (Micro) Aerobic Digestion Process, Ph.D. diss., Tongji UniversityGoogle Scholar
  8. 8.
    Cheng, J. H., Zhang, Y. Y., Zhu, N. W., & Liu, S. G. (2011). Advanced Materials Research, 236–238, 437–440.CrossRefGoogle Scholar
  9. 9.
    Liu, S. G., Zhu, N. W., & Li, L. Y. (2011). Chemical Engineering Journal, 174, 564–570.CrossRefGoogle Scholar
  10. 10.
    Zhu, N. W., Lin, J. M., Cheng, H., Zhang, S. F., Jia, J.P., Cheng, J. H. & Feng, L. (2005). China Patent CN1587110.Google Scholar
  11. 11.
    Cheng, J. H., Zhou, Q. F., & Zhu, N. W. (2009). Research Journal of Environmental Science (China), 22, 484–489.Google Scholar
  12. 12.
    Zhao, Q., & Kugel, G. (1996). Environmental Science and Health, 31, 2211–2231.Google Scholar
  13. 13.
    Borowski, S., & Szopa Józef, S. (2007). Bioresource Technology, 98, 1199–1207.CrossRefGoogle Scholar
  14. 14.
    Lee, Y.-S., & Han, G.-B. (2012). Biosystems Engineering, 111, 243–250.CrossRefGoogle Scholar
  15. 15.
    Staton, K. L., Alleman, J. E., Pressley, R. L., Eloff, J. (2001). WEF/AWWA/CWEA Joint Residuals and Biosolids Management Conference, San Diego, American.Google Scholar
  16. 16.
    APHA., AWWA., WEF (2005) Standard Methods for the Examination of Water and Wastewater, 21th edition. Washington DC: APHA/AWWA/WEF.Google Scholar
  17. 17.
    Haner, A., Mason, C. A., & Hamer, G. (1994). Water Research, 28, 863–869.CrossRefGoogle Scholar
  18. 18.
    Banat, F. A., Precht, S. B., & Bischof, F. (1999). Chemosphere, 39, 2097–2106.CrossRefGoogle Scholar
  19. 19.
    SEPAC. (2002). Analytical and monitoring methods of water and wastewater (4th ed.). Beijing: China Environmental Science Press. 10–213, 254–257, 704–710.Google Scholar
  20. 20.
    US EPA CFR 40 PART 503 (1993) Standards for the Use or Disposal of Sewage Sludge. Washington: US EPAGoogle Scholar
  21. 21.
    Chang, C. N., Ma, Y. S., & Lo, C. W. (2002). Chemical Engineering Journal, 90, 273–281.CrossRefGoogle Scholar
  22. 22.
    Fothergill, S., & Mavinic, D. S. (2000). Journal of Environmental Engineering, 126, 389–396.CrossRefGoogle Scholar
  23. 23.
    Layden, M. N., Kelly, H. G., Mavinic, D. S., Moles, R., & Bartlett, J. (2007). Journal of Environmental Engineering and Science, 6, 679–690.CrossRefGoogle Scholar
  24. 24.
    Piterina, A. V., John, B., & Tony Pembroke, J. (2012). Water Research, 46, 2488–2504.CrossRefGoogle Scholar
  25. 25.
    Mavinic, D. S., Mahendraker, V., Sharma, A., & Kelly, H. G. (2001). Journal of Environmental Engineering, 127, 311–316.CrossRefGoogle Scholar
  26. 26.
    Chu, A., Mavinic, D. S., Ramey, W. D., & Kelly, H. G. (1996). Water Research, 30, 1759–1770.CrossRefGoogle Scholar
  27. 27.
    Van Loosdrecht, M. C. M., & Henze, M. (1999). Water Science and Technology, 39, 107–117.CrossRefGoogle Scholar
  28. 28.
    Liu, S. G., Song, F. Y., Zhu, N. W., Yuan, H. P., & Cheng, J. H. (2010). Bioresource Technology, 101, 9438–9444.CrossRefGoogle Scholar
  29. 29.
    Ugwuanyi, J. O., Harvey, L. M., & Mcneil, B. (1999). Journal of Applied Microbiology, 87, 387–395.CrossRefGoogle Scholar
  30. 30.
    Rojas, J., & Zhelev, T. (2012). Computers and Chemical Engineering, 38, 52–63.CrossRefGoogle Scholar
  31. 31.
    Tiquia, S. M., Tam, N. F. Y., & Hodgekiss, I. J. (1996). Bioresource Technology, 55, 201–206.CrossRefGoogle Scholar
  32. 32.
    Chauzy, J., Cretenot, D., Bausseron, A., Gokelaere, X. (2007). Proceedings of the WEFTEC.Google Scholar
  33. 33.
    Banat, F. A., Precht, S. B., & Bischof, F. (2000). Chemosphere, 41, 297–302.CrossRefGoogle Scholar
  34. 34.
    Scholz, M. (2005). Industrial and Engineering Chemistry Research, 44, 8157–8163.CrossRefGoogle Scholar
  35. 35.
    Mahmoud, N., Zeeman, G., Gijzen, H., & Gatze, L. (2004). Water Research, 38, 983–991.CrossRefGoogle Scholar
  36. 36.
    Li, X., Ma, H., Wang, Q., Matsumoto, S., Maeda, T., & Ogawa, H. (2009). Bioresource Technology, 100, 2475–2481.CrossRefGoogle Scholar
  37. 37.
    Zhou, J. P. (2003). Factors Influencing Dewaterability of Thermophilic Aerobically Digested Biosolids, Ph.D. diss., University of British Columbia.Google Scholar
  38. 38.
    Bolzonella, D., Cavinato, C., Fatone, F., Pavan, P., & Cecchi, F. (2012). Waste Management, 32, 1196–1201.CrossRefGoogle Scholar
  39. 39.
    Pastor, L., Marti, N., Bouzas, A., & Seco, A. (2008). Bioresource Technology, 99, 4817–4824.CrossRefGoogle Scholar
  40. 40.
    Marti, N., Bouzas, A., Seco, A., & Ferrer, J. (2008). Chemical Engineering Journal, 141, 67–74.CrossRefGoogle Scholar
  41. 41.
    Rohan, J., Ashish, P., Sreekrishnan, T. R., & Dastidar, M. G. (2010). Journal of Environmental Sciences, 22, 230–236.CrossRefGoogle Scholar
  42. 42.
    Chen, S. Y., & Pan, S. H. (2010). Journal of Hazardous Materials, 179, 340–347.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jiehong Cheng
    • 1
    Email author
  • Yuehong Ji
    • 2
  • Feng Kong
    • 1
  • Xian Chen
    • 1
  1. 1.School of Chemical and Environmental EngineeringJiangsu University of TechnologyChangzhouChina
  2. 2.School of Environmental Science and EngineeringSuzhou University of Science and TechnologySuzhouChina

Personalised recommendations