Skip to main content
Log in

Application of a Chitosan-Immobilized Talaromyces thermophilus Lipase to a Batch Biodiesel Production from Waste Frying Oils

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Waste frying oil, which not only harms people’s health but also causes environmental pollution, can be a good alternative to partially substitute petroleum diesel through transesterification reaction. This oil contained 8.8 % of free fatty acids, which cause a problem in a base-catalyzed process. In this study, synthesis of biodiesel was efficiently catalyzed by the covalently immobilized Talaromyces thermophilus lipase and allowed bioconversion yield up to 92 % after 24 h of reaction time. The optimal molar ratio was four to six parts of methanol to one part of oil with a biocatalyst loaded of 25 wt.% of oil. Further, experiments revealed that T. thermophilus lipase, immobilized by a multipoint covalent liaison onto activated chitosan via a short spacer (glutaraldehyde), was sufficiently tolerant to methanol. In fact, using the stepwise addition of methanol, no significant difference was observed from the one-step whole addition at the start of reaction. The batch biodiesel synthesis was performed in a fixed bed reactor with a lipase loaded of 10 g. The bioconversion yield of 98 % was attained after a 5-h reaction time. The bioreactor was operated successfully for almost 150 h without any changes in the initial conversion yield. Most of the chemical and physical properties of the produced biodiesel meet the European and USA standard specifications of biodiesel fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agarwal, A. K., & Das, L. M. (2001). Journal of Engineering for Gas Turbines and Power, 123, 440–447.

    Article  CAS  Google Scholar 

  2. Vasudevan, P. T., & Briggs, M. (2008). Journal of Industrial Microbiology and Biotechnology, 5, 421–430.

    Article  Google Scholar 

  3. Teresa, M. M., Antonio, A. M., & Nidia, S. C. (2010). Renewable and Sustainable Energy Reviews, 14, 217–232.

    Article  Google Scholar 

  4. Lam, M. K., & Lee, K. T. (2012). Biotechnology Advances, 30, 673–690.

    Article  CAS  Google Scholar 

  5. Muniyappa, P. R., Brammer, S. C., & Noureddini, H. (1996). Bioresource Technology, 56, 19–24.

    Article  CAS  Google Scholar 

  6. Haas, M. J., Aloon, A. J., Yee, W. C., & Foglia, T. A. (2006). Bioresource Technology, 97, 671–678.

    Article  CAS  Google Scholar 

  7. Lam, M. K., Tan, K. T., Lee, K. T., & Mohamed, A. R. (2009). Renewable & Sustainable Energy Reviews, 13, 1456–1464.

    Article  CAS  Google Scholar 

  8. Gazmuri, A. M., & Bouchon, P. (2009). Food Chemistry, 115, 999–1005.

    Article  CAS  Google Scholar 

  9. Kleinova, A., Vailing, I., Labaj, J., Mikulec, J., & Cvengros, J. (2011). Fuel Processing Technology, 92, 1980–1986.

    Article  CAS  Google Scholar 

  10. Felizardo, P., Neiva Correia, M. J., Raposo, I., Mendes, J. F., Berkemeier, R., & Bordado, J. M. (2006). Waste Management, 26, 487–494.

    Article  CAS  Google Scholar 

  11. Lotero, E., Liu, Y., Lopez, D. E., Suwannakarn, K., Bruce, D. A., & Goodwin, J. G. (2005). Industrial & Engineering Chemistry Research, 44, 5353–5363.

    Article  CAS  Google Scholar 

  12. Lam, M. K., Lee, K. T., & Mohamed, A. R. (2012). Renewable & Sustainable Energy Reviews, 28, 500–518.

    Google Scholar 

  13. Sarda, L., & Desnuelle, P. (1958). Biochimica Biophysica Acta, 30, 513–521.

    Article  CAS  Google Scholar 

  14. Verger, R. (1997). Trends in Biotechnology, 15, 32–38.

    Article  CAS  Google Scholar 

  15. Belhaj-Ben Romdhane, I., Fendri, A., Gargouri, Y., Gargouri, A., & Belghith, H. (2010). Biochemistry Engineering Journal, 53, 112–120.

    Article  CAS  Google Scholar 

  16. Schmid, R. D., & Verger, R. (1998). Angewandte Chemie International Edition, 37, 1608–1633.

    Article  Google Scholar 

  17. Kulkarni, M. G., & Dalai, A. K. (2006). Industrial & Engineering Chemistry Research, 45, 2901–2913.

    Article  CAS  Google Scholar 

  18. Chen, J. W., & Wu, W. T. (2003). Journal of Bioscience and Bioengineering, 95, 466–469.

    CAS  Google Scholar 

  19. Li, W., Du, W., Liu, D., & Yao, Y. (2008). Biochemistry Engineering Journal, 41, 111–115.

    Article  CAS  Google Scholar 

  20. Royon, D., Daz, M., Ellenrieder, G., & Locatelli, S. (2007). Bioresource Technology, 98, 648–653.

    Article  CAS  Google Scholar 

  21. Brady, D., & Jordaan, J. (2009). Biotechnology Letters, 31(11), 1639–1650.

    Article  CAS  Google Scholar 

  22. Garcia-Galan, C., Berenguer-Murcia, A., Fernandez-Lafuente, R., & Rodrigues, R. C. (2011). Advanced Synthesis and Catalysis, 353(16), 2885–2904.

    Article  CAS  Google Scholar 

  23. Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, A., Torres, R., & Fernández-Lafuente, R. (2013). Chemical Society Reviews, 42(15), 6290–6307.

    Article  CAS  Google Scholar 

  24. Verma, M. L., Barrow, C. J., & Puri, M. (2013). Applied Microbiology and Biotechnology, 97(1), 23–39.

    Article  CAS  Google Scholar 

  25. Chen, G., Ying, M., & Li, W. (2006). Applied Biochemistry and Biotechnology, 132, 911–921.

    Article  Google Scholar 

  26. Xu, Y. Y., Du, W., Zeng, J., & Liu, D. H. (2004). Biocatalysis and Biotransformation, 22, 45–48.

    Article  CAS  Google Scholar 

  27. Bernardes, O. L., Bevilaqua, J. V., Leal, M., Freire, D. M. G., & Langone, M. A. P. (2007). Applied Biochemistry and Biotechnology, 137, 105–114.

    Article  Google Scholar 

  28. Shah, S., & Gupta, M. N. (2007). Process Biochemistry, 42, 409–414.

    Article  CAS  Google Scholar 

  29. Mandels, M., Weber, J. (1969). In Hajny, G.J., Reese E.T. (Eds.). Advances in chemistry series, 95 (pp. 391–413). Washington, D.C.: American Chemical. Society.

  30. Fernandez-Lafuente, R., Rosell, C. M., Rodriguez, V., Santana, C., Soler, G., Bastida, A., & Guisan, J. M. (1993). Enzyme and Microbial Technology, 15, 546–550.

    Article  CAS  Google Scholar 

  31. Belhaj-Ben Romdhane, I., Ben Romdhane, Z., Gargouri, A., & Belghith, H. (2010). Journal of Molecular Catalysis B: Enzymatic, 68, 230–239.

    Article  Google Scholar 

  32. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  33. Rathelot, J., Julien, R., Canioni, P., Coeroli, C., & Sarda, L. (1975). Biochimie, 57, 1117–1122.

    Article  CAS  Google Scholar 

  34. Tiss, A., Carriere, F., & Verger, R. (2001). Analytical Biochemistry, 294, 36–43.

    Article  CAS  Google Scholar 

  35. Knothe, G. J., Gerpen, V., & Krahl, J. (2005). The biodiesel handbook (p. 302). Champaign: AOCS.

    Book  Google Scholar 

  36. Rezenka, T., & Rezankovea, H. (1999). Analytica Chimica Acta, 398, 251–261.

    Google Scholar 

  37. Topsøe, F., & Højgaard Jensen, H. (1984). Journal of Low Temperature Physics, 55, 469–473.

    Article  Google Scholar 

  38. Stein, S., Levitsky, A., Fateev, O. & Mallard, G. (1998). Windows software, Version 1.6 d.

  39. Pereira, E. B., Zanin, G. M., & De Castro, H. F. (2003). Brazilian Journal of Chemical Engineering, 20, 343.

    Article  CAS  Google Scholar 

  40. Jianhua, H., Yuanfa, L., & Xingguo, W. (2009). Journal of Molecular Catalysis B: Enzymatic, 57, 10–15.

    Article  Google Scholar 

  41. Barbosa, O., Torres, R., Ortiz, C., & Fernandez-Lafuente, R. (2012). Process Biochemistry, 47(8), 1220–1227.

    Article  CAS  Google Scholar 

  42. Belhaj-Ben Romdhane, I., Fendri, A., Frikha, F., Gargouri, A., & Hafedh, B. (2012). International Journal of Biological Macromolecules, 51, 892–900.

    Article  Google Scholar 

  43. Grochulski, P., Li, Y., Schrag, J., & Cygler, M. (1994). Protein Science, 3, 82–91.

    Article  CAS  Google Scholar 

  44. Lam, M. K., Lee, K. T., & Mohamed, A. R. (2009). Applied Catalysis B, 93, 134–139.

    Article  CAS  Google Scholar 

  45. Lam, M. K., Lee, K. T., & Mohamed, A. R. (2010). Biotechnology Advances, 28, 500–518.

    Article  CAS  Google Scholar 

  46. Gog, A., Roman, M., Tos, M., Paizs, C., & Dan Irimie, F. (2012). Renewable Energy, 39, 10–16.

    Article  CAS  Google Scholar 

  47. Soumanou, M. M., & Bornscheuer, U. T. (2003). European Journal of Lipid Science and Technology, 105, 656–660.

    Article  CAS  Google Scholar 

  48. Chen, J. P., & Lin, W. S. (2003). Enzyme and Microbial Technology, 32, 801–811.

    Article  CAS  Google Scholar 

  49. Kawakami, K., Takahashi, R., Shakeri, M., & Sakai, S. (2009). Journal of Molecular Catalysis B: Enzymatic, 57, 194–197.

    Article  CAS  Google Scholar 

  50. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Enzyme and Microbial Technology, 40, 1451–1463.

    Article  CAS  Google Scholar 

  51. Chen, Y., Xiao, B., Chang, J., Fu, Y., Lv, P., & Wang, X. (2009). Energy Conversion and Management, 50, 668–673.

    Article  CAS  Google Scholar 

  52. Dizgea, N., Keskinlera, B., & Tanriseven, A. (2009). Biochemistry Engineering Journal, 44, 220–225.

    Article  Google Scholar 

  53. Da Ros, P. C. M., Silva, G. A. M., Mendes, A. A., Santos, J. C., & De Castro, H. F. (2010). Bioresource Technology, 101, 5508–5515.

    Article  Google Scholar 

  54. Poppe, J. K., Garcia-Galan, C., Matte, C. R., Fernandez-Lafuente, Rodrigues, R. C., & Ayub, M. A. Z. (2013). Journal of Molecular Catalysis B: Enzymatic, 94, 51–56.

    Article  CAS  Google Scholar 

  55. Séverac, E., Galy, O., Turon, F., Pantel, C. A., Condoret, J.-S., Monsan, P., & Marty, A. (2011). Enzyme and Microbial Technology, 48, 61–70.

    Article  Google Scholar 

  56. Knothe, G., Matheaus, A., & Ryan, T. W. (2003). Fuel, 82, 971–975.

    Article  CAS  Google Scholar 

  57. Ejikeme, P.M., Egbonu, C.A.C., Anyaogu, I.D. & Eze, V.C. (2008). Chemical Society of Nigeria, Coal City Chemistry Conference Proceeding, pp. 37–41.

Download references

Acknowledgments

We are very grateful to Miss L. Jlaiel and Miss F. Rezgui (CBS, Sfax) for their help in the GC–MS analysis. Special thanks are also due to Dr. K. Srih-Belghith (FSS, Sfax) for her help in the physicochemical analysis of the biodiesel. This work received financial support from “Ministère de l’Enseignement Supérieure et de la Recherche Sientifique, Tunisia” granted to the Laboratory of Biomass Valorization and Proteins Production in Eukaryotes, Centre of Biotechnology of Sfax, University of Sfax, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafedh Belghith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romdhane, I.BB., Romdhane, Z.B., Bouzid, M. et al. Application of a Chitosan-Immobilized Talaromyces thermophilus Lipase to a Batch Biodiesel Production from Waste Frying Oils. Appl Biochem Biotechnol 171, 1986–2002 (2013). https://doi.org/10.1007/s12010-013-0449-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0449-y

Keywords

Navigation