Skip to main content

Advertisement

Log in

Response of Human Mesenchymal Stem Cells to Patterned and Randomly Oriented Poly(Vinyl Alcohol) Nano-fibrous Scaffolds Surface-Modified with Arg-Gly-Asp (RGD) Ligand

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to obtain a better insight of how nano-fibrous scaffolds can affect human mesenchymal stem cells responses. Therefore, in this study, using electrospinning technique, poly(vinyl alcohol) (PVA) nano-fibers with two different patterns were prepared. In the first structure, PVA nano-fibers were oriented randomly and in the second structure, nano-fibers were electrospun in such a way that a special pattern was obtained. In order to enhance their stability, scaffolds were cross-linked using glutaraldehyde vapor. RGD immobilization was used to improve cell adhesion properties of the scaffolds. SEM micrographs demonstrated that the cell adhesion was effectively enhanced after RGD immobilization and higher cell densities were observed on RGD-modified scaffolds. Randomly oriented nano-fibers showed better cell adhesion compared to patterned structure. Patterned structure also revealed slightly lower cell viability compared to random nano-fibers. Finally, it was assumed that randomly oriented nano-fibers provide a more favorable surface for cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. He, L., Liao, S., Quan, D., Ma, K., Chan, C., Ramakrishna, S., et al. (2010). Acta Biomaterialia, 6, 2960–2969.

    Article  CAS  Google Scholar 

  2. Yim, E. K., Pang, S. W., & Leong, K. W. (2007). Experimental Cell Research, 313, 1820–1829.

    Article  CAS  Google Scholar 

  3. Martinez, E., Engel, E., Planell, J. A., & Samitier, J. (2009). Annals of Anatomy, 191, 126–135.

    Article  CAS  Google Scholar 

  4. Ranucci, C. S., & Moghe, P. V. (2001). Journal of Biomedical Materials Research, 54, 149–161.

    Article  CAS  Google Scholar 

  5. Teixeira, A. I., Nealey, P. F., & Murphy, C. J. (2004). Journal of Biomedical Materials Research, 71A, 369–376.

  6. Guarino, V., Alvarez-Perez, M., Cirillo, V., & Ambrosio, L. (2011). Journal of Bioactive and Compatible Polymers, 26, 144–160.

    Article  CAS  Google Scholar 

  7. Dalby, M. J., Gadegaard, N., Tare, R., Andar, A., Riehle, M. O., Herzyk, P., et al. (2007). Nature Materials, 6, 997–1003.

    Article  CAS  Google Scholar 

  8. Curtis, A. S., Gadegaard, N., Dalby, M. J., Riehle, M. O., Wilkinson, C. D., & Aitchison, G. (2004). IEEE Transactions on NanoBioscience, 3, 61–65.

    Article  CAS  Google Scholar 

  9. Kim, T. G., & Park, T. G. (2006). Tissue Engineering, 12, 221–233.

    Article  CAS  Google Scholar 

  10. Lee, S. Y., Jang, D. H., Kang, Y. O., Kim, O. B., Jeong, L., Kang, H. K., et al. (2012). Applied Surface Science, 258, 6914–6922.

    Article  CAS  Google Scholar 

  11. Hersel, U., Dahmen, C., & Kessler, H. (2003). Biomaterials, 24, 4385–4415.

    Article  CAS  Google Scholar 

  12. Barnes, C. P., Sell, S. A., Boland, E. D., Simpson, D. G., & Bowlin, G. L. (2007). Advanced Drug Delivery Reviews, 59, 1413–1433.

    Article  CAS  Google Scholar 

  13. Lee, K. Y., Jeong, L., Kang, Y. O., Lee, S. J., & Park, W. H. (2009). Advanced Drug Delivery Reviews, 61, 1020–1032.

    Article  CAS  Google Scholar 

  14. Smith, L. A., & Ma, P. X. (2004). Colloids and Surfaces, B: Biointerfaces, 39, 125–131.

    Article  CAS  Google Scholar 

  15. Giannoni, P., & Narcisi, R. (2009). Journal of Applied Biomaterials & Biomechanics, 1, 1–12.

    Google Scholar 

  16. Bhattarai, N., Edmondson, D., Veiseh, O., Matsen, F. A., & Zhang, M. (2005). Biomaterials, 26, 6176–6184.

    Article  CAS  Google Scholar 

  17. Zhang, X., Reagan, M. R., & Kaplan, D. L. (2009). Advanced Drug Delivery Reviews, 61, 988–1006.

    Article  CAS  Google Scholar 

  18. Asran, A. S., Henning, S., & Michler, G. H. (2010). Polymer, 51, 868–876.

    Article  CAS  Google Scholar 

  19. Sequeira, S. J., Soscia, D. A., Oztan, B., Mosier, A. P., Jean-Gilles, R., Gadre, A., et al. (2012). Biomaterials, 33, 3175–3186.

    Article  CAS  Google Scholar 

  20. Yoshimoto, H., Shin, Y. M., Terai, H., & Vacanti, J. P. (2003). Biomaterials, 24, 2077–2082.

    Article  CAS  Google Scholar 

  21. Peng, F., Yu, X., & Wei, M. (2011). Acta Biomaterialia, 7, 2585–2592.

    Article  CAS  Google Scholar 

  22. Chun, J. Y., Kang, H. K., Jeong, L., Kang, Y. O., Oh, J. E., Yeo, I. S., et al. (2010). Colloids and Surfaces, B: Biointerfaces, 78, 334–342.

    Article  CAS  Google Scholar 

  23. Wilkinson, C. D., Riehle, M. O., Wood, M., Gallagher, J., & Curtis, A. S. (2002). Materials Science and Engineering: C, 19, 263–269.

    Article  Google Scholar 

  24. Andersson, A. S., Bäckhed, F., von Euler, A., Richter-Dahlfors, A., Sutherland, D., & Kasemo, B. (2003). Biomaterials, 24, 3427–3436.

    Article  CAS  Google Scholar 

  25. Dalby, M. J., McCloy, D., Robertson, M., Agheli, H., Sutherland, D., Affrossman, S., et al. (2006). Biomaterials, 27, 2980–2987.

    Article  CAS  Google Scholar 

  26. Pham, Q. P., Sharma, U., & Mikos, A. G. (2006). Biomacromolecules, 7, 2796–2805.

    Article  CAS  Google Scholar 

  27. Coutinho, D. F., Gomes, M. E., Neves, N. M., & Reis, R. L. (2012). Acta Biomaterialia, 8, 1490–1497.

    Article  CAS  Google Scholar 

  28. Gil, E. S., Park, S. H., Marchant, J., Omenetto, F., & Kaplan, D. L. (2010). Macromolecular Bioscience, 10, 664–673.

    Article  CAS  Google Scholar 

  29. Koski, A., Yim, K., & Shivkumar, S. (2004). Materials Letters, 58, 493–497.

    Article  CAS  Google Scholar 

  30. Yang, E., Qin, X., & Wang, S. (2008). Materials Letters, 62, 3555–3557.

    Article  CAS  Google Scholar 

  31. Massia, S. P., & Hubbell, J. A. (1990). Analytical Biochemistry, 187, 292–301.

    Article  CAS  Google Scholar 

  32. Taepaiboon, P., Rungsardthong, U., Supaphol, P. (2007) Nanotechnology 18, 175102 (11pp).

  33. Liang, D., Hsiao, B. S., & Chu, B. (2007). Advanced Drug Delivery Reviews, 59, 1392–1412.

    Article  CAS  Google Scholar 

  34. Park, T. G. (2002). Journal of Biomedical Materials Research, 59, 127–135.

    Article  CAS  Google Scholar 

  35. Yoon, J. J., Nam, Y. S., Kim, J. H., & Park, T. G. (2002). Biotechnology and Bioengineering, 78, 1–10.

    Article  CAS  Google Scholar 

  36. Schugens, C. H., Grandfils, C. H., Jerome, R., Teyssie, P., Delree, P., Martin, D., et al. (1992). Journal of Biomedical Materials Research, 29, 1349–1362.

    Article  Google Scholar 

  37. Albelda, S. M., & Buck, C. A. (1990). FASEB Journal, 4, 2868–2680.

    CAS  Google Scholar 

  38. Massia, S. P., & Hubbell, J. A. (1991). Journal of Cell Biology, 114, 1089–1100.

    Article  CAS  Google Scholar 

  39. Drumheller, P. D., Elbert, D. E., & Hubbell, J. A. (1993). Biotechnology and Bioengineering, 43, 772–780.

    Article  Google Scholar 

  40. Ho, M. H., Wang, D. M., & Hsieh, H. J. (2005). Biomaterials, 26, 3197–3206.

    Article  CAS  Google Scholar 

  41. Chu, X. H., Shi, X. L., Feng, Z. Q., Gu, Z., & Ding, Y. T. (2009). Biotechnology Letters, 31, 347–352.

    Article  CAS  Google Scholar 

  42. Ho, M. H., Wang, D. M., Hsieh, H. J., Liu, H. C., Hsien, T. Y., Lai, J. Y., et al. (2005). Biomaterials, 26, 3197–3206.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Hajir Bahrami and Dr. Adele Gholipour Kanaani from Department of Textile Chemistry and Fibers Science, Faculty of Textile Engineering, Amirkabir University of Technology for electrospinning facility and technical assistance. The valuable comments by Mr. Morteza Mehrjou at National Cell Bank, Pasteur Institute of Iran are also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Tahriri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamani, Y., Rabiee, M., Shokrgozar, M.A. et al. Response of Human Mesenchymal Stem Cells to Patterned and Randomly Oriented Poly(Vinyl Alcohol) Nano-fibrous Scaffolds Surface-Modified with Arg-Gly-Asp (RGD) Ligand. Appl Biochem Biotechnol 171, 1513–1524 (2013). https://doi.org/10.1007/s12010-013-0442-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0442-5

Keywords

Navigation