Skip to main content
Log in

Tailoring the pH Dependence of Human Non-pancreatic Secretory Phospholipase A2 by Engineering Surface Charges

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Human non-pancreatic secretory phospholipase A2 (hnpsPLA2) catalyzes the sn-2 acyl hydrolysis of phospholipids. It was reported that hnpsPLA2 is involved in various diseases like inflammation, cancer, and so on. This enzyme also exhibits anti-bacterial and anti-virus activities. It is active over a broad pH range, with higher activity at alkaline conditions. In order to make it suitable as a potential bactericide, high activity at neutral pH is preferable. We have tried to tailor the pH dependence of hnpsPLA2 activity by replacing its surface charged residues. Three surface charge replacements, Arg42Glu, Arg100Glu, and Glu89Lys, showed increased activities at neutral pH, which are 2.3, 2.8, and 2.3 times that of the wild-type enzyme at pH 7. Both the positive-to-negative and negative-to-positive mutations lowered the optimum enzymatic reaction pH of hnpsPLA2, indicating that the enzyme pH profile depends on a delicate balance of charged residues. The activity changes are in good agreement with the recently proposed calcium-coordinated catalytic triad mechanism. This study also provides a general means of enhancing hnpsPLA2 activity at low pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

hnpsPLA2 :

Human non-pancreatic secretory phospholipase A2

IBS:

Interface binding site

CD:

Circular dichroism

ANS:

1-anilinonaphthalene-8-sulfonate

DMPC:

1,2-dimyristoyl-sn-glycero-3-phosphocholine

GIIAPLA2 :

Group IIA phospholipase A2

V max :

The maximum velocity of the enzymatic activity

References

  1. Crowl, R. M., Stoller, T. J., Conroy, R. R., & Stoner, C. R. (1991). Journal of Biological Chemistry, 266(4), 2647–2651.

    CAS  Google Scholar 

  2. Yuan, C., & Tsai, M. (1999). Biochimica et Biophysica Acta, 1441(2–3), 215–22.

    Article  CAS  Google Scholar 

  3. Boilard, E., Bourgoin, S. G., Bernatchez, C., Poubelle, P. E., & Surette, M. E. (2003). FASEB Journal, 17(9), 1068–80.

    Article  CAS  Google Scholar 

  4. Verheij, H. M., Volwerk, J. J., Jansen, E. H., Puyk, W. C., Dijkstra, B. W., Drenth, J., et al. (1980). Biochemistry, 19(4), 743–50.

    Article  CAS  Google Scholar 

  5. Seshadri, K., Vishveshwara, S., & Jain, M. K. (1994). Proceedings of the Indian Academy of Sciences-Chemical Sciences, 106(5), 1177–1189.

    CAS  Google Scholar 

  6. Leopoldini, M., Russo, N., & Toscano, M. (2010). Journal of Physical Chemistry B, 114(35), 11584–93.

    Article  CAS  Google Scholar 

  7. Thomas, P. G., Russell, A. J., & Fersht, A. R. (1985). Nature, 318(6044), 375–376.

    Article  CAS  Google Scholar 

  8. Valenzue, P., & Bender, M. L. (1971). Biochimica et Biophysica Acta, 250(3), 538.

    Article  Google Scholar 

  9. DeSantis, G., & Jones, J. B. (1998). JACS, 120(34), 8582–8586.

    Article  CAS  Google Scholar 

  10. Fang, T. Y., & Ford, C. (1998). Protein Engineering, 11(5), 383–388.

    Article  CAS  Google Scholar 

  11. Masui, A., Fujiwara, N., Yamamoto, K., Takagi, M., & Imanaka, T. (1998). Journal of Fermentation and Bioengineering, 85(1), 30–36.

    Article  CAS  Google Scholar 

  12. Tomschy, A., Brugger, R., Lehmann, M., Svendsen, A., Vogel, K., Kostrewa, D., et al. (2002). Applied and Environmental Microbiology, 68(4), 1907–1913.

    Article  CAS  Google Scholar 

  13. Lai, L. H., Wang, Y. L., Xu, X. J., Tang, Y. Q., Ni, Y. S., & Zhang, L. X. (1994). Science in China Series B-Chemistry, 37(1), 1–5.

    CAS  Google Scholar 

  14. Huang, C., Zhou, L., Liu, Y., & Lai, L. (2006). Analytical Biochemistry, 351(1), 11–7.

    Article  CAS  Google Scholar 

  15. Baker, S. F., Othman, R., & Wilton, D. C. (1998). Biochemistry, 37(38), 13203–11.

    Article  CAS  Google Scholar 

  16. Snitko, Y., Koduri, R. S., Han, S. K., Othman, R., Baker, S. F., Molini, B. J., et al. (1997). Biochemistry, 36(47), 14325–33.

    Article  CAS  Google Scholar 

  17. Canaan, S., Nielsen, R., Ghomashchi, F., Robinson, B. H., & Gelb, M. H. (2002). Journal of Biological Chemistry, 277(34), 30984–90.

    Article  CAS  Google Scholar 

  18. Hansford, K. A., Reid, R. C., Clark, C. I., Tyndall, J. D. A., Whitehouse, M. W., Guthrie, T., et al. (2003). Chembiochem, 4(2–3), 181–185.

    Article  CAS  Google Scholar 

  19. Karray, A., Frikha, F., Ben Ali, Y., Gargouri, Y., & Bezzine, S. (2011). Lipids in Health and Disease, 10, 27.

    Article  CAS  Google Scholar 

  20. Janssen, M. J., Vermeulen, L., Van der Helm, H. A., Aarsman, A. J., Slotboom, A. J., & Egmond, M. R. (1999). Biochimica et Biophysica Acta, 1440(1), 59–72.

    Article  CAS  Google Scholar 

  21. Pan, Y. H., & Bahnson, B. J. (2010). Biochimica et Biophysica Acta, 1804(7), 1443–8.

    Article  CAS  Google Scholar 

  22. Russell, A. J., & Fersht, A. R. (1987). Nature, 328(6130), 496–500.

    Article  CAS  Google Scholar 

  23. Murakami, M., Taketomi, Y., Sato, H., & Yamamoto, K. (2011). Journal of Biochemistry, 150(3), 233–55.

    Article  CAS  Google Scholar 

  24. Cha, J., & Batt, C. A. (1998). Molecules and Cells, 8(4), 374–82.

    CAS  Google Scholar 

  25. Noel, J. P., Bingman, C. A., Deng, T. L., Dupureur, C. M., Hamilton, K. J., Jiang, R. T., et al. (1991). Biochemistry, 30(51), 11801–11.

    Article  CAS  Google Scholar 

  26. Weiss, J., Wright, G., Bekkers, A. C., van den Bergh, C. J., & Verheij, H. M. (1991). Journal of Biological Chemistry, 266(7), 4162–7.

    CAS  Google Scholar 

  27. Bhat, M. K., Pickersgill, R. W., Perry, B. N., Brown, R. A., Jones, S. T., Mueller-Harvey, I., et al. (1993). Biochemistry, 32(45), 12203–8.

    Article  CAS  Google Scholar 

  28. Goodenough, P. W., Bhat, K. M., Collins, M. E., Perry, B. N., Pickersgill, R. W., Sumner, I. G., et al. (1991). Protein Engineering, 4(8), 929–34.

    Article  CAS  Google Scholar 

  29. Pickersgill, R. W., Sumner, I. G., Collins, M. E., Warwicker, J., Perry, B., Bhat, K. M., et al. (1991). FEBS Letters, 281(1–2), 219–22.

    Article  CAS  Google Scholar 

  30. Zhu, H., Dupureur, C. M., Zhang, X., & Tsai, M. D. (1995). Biochemistry, 34(46), 15307–14.

    Article  CAS  Google Scholar 

  31. Song, J. K., & Rhee, J. S. (2000). Applied and Environmental Microbiology, 66(3), 890–4.

    Article  CAS  Google Scholar 

  32. Li, Y. S., & Tsai, M. D. (1993). JACS, 115(19), 8523–8526.

    Article  CAS  Google Scholar 

  33. Kumar, A., Sekharudu, C., Ramakrishnan, B., Dupureur, C. M., Zhu, H. X., Tsai, M. D., et al. (1994). Protein Science, 3(11), 2082–2088.

    Article  CAS  Google Scholar 

  34. Sekar, K., Yu, B. Z., Rogers, J., Lutton, J., Liu, X., Chen, X., et al. (1997). Biochemistry, 36(11), 3104–14.

    Article  CAS  Google Scholar 

  35. Janssen, M. J., van de Wiel, W. A., Beiboer, S. H., van Kampen, M. D., Verheij, H. M., Slotboom, A. J., et al. (1999). Protein Engineering, 12(6), 497–503.

    Article  CAS  Google Scholar 

  36. Edwards, S. H., Thompson, D., Baker, S. F., Wood, S. P., & Wilton, D. C. (2002). Biochemistry, 41(52), 15468–76.

    Article  CAS  Google Scholar 

  37. Liu, L. W., Wang, B., Chen, H. G., Wang, S. Y., Wang, M. D., Zhang, S. M., et al. (2009). Process Biochemistry, 44(8), 912–915.

    Article  CAS  Google Scholar 

  38. Berg, O. G., Gelb, M. H., Tsai, M. D., & Jain, M. K. (2001). Chemistry Review, 101(9), 2613–54.

    Article  CAS  Google Scholar 

  39. Hu, K. K., & Tanaka, T. (2009). Biochim Biophys Acta-Proteins and Proteomics, 1794(12), 1715–1724.

    Article  CAS  Google Scholar 

  40. Turunen, O., Vuorio, M., Fenel, F., & Leisola, M. (2002). Protein Engineering, 15(2), 141–5.

    Article  CAS  Google Scholar 

  41. Kusano, M., Yasukawa, K., Hashida, Y., & Inouye, K. (2006). Journal of Biochemistry, 139(6), 1017–1023.

    Article  CAS  Google Scholar 

  42. Zhou, G. W., Guo, J., Huang, W., Fletterick, R. J., & Scanlan, T. S. (1994). Science, 265(5175), 1059–64.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China and the Ministry of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luhua Lai.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 246 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, S., Lai, L. Tailoring the pH Dependence of Human Non-pancreatic Secretory Phospholipase A2 by Engineering Surface Charges. Appl Biochem Biotechnol 171, 1454–1464 (2013). https://doi.org/10.1007/s12010-013-0437-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0437-2

Keywords

Navigation