Skip to main content

Advertisement

Log in

Enhancing the Cellulose-Degrading Activity of Cellulolytic Bacteria CTL-6 (Clostridium thermocellum) by Co-Culture with Non-cellulolytic Bacteria W2-10 (Geobacillus sp.)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of a non-cellulolytic bacterium W2-10 (Geobacillus sp.) on the cellulose-degrading activity of a cellulolytic bacterium CTL-6 (Clostridium thermocellum) was determined using cellulose materials (paper and straw) in peptone cellulose solution (PCS) medium under aerobic conditions. The results indicated that in the co-culture, addition of W2-10 resulted in a balanced medium pH, and may provide the required anaerobic environment for CTL-6. Overall, addition of W2-10 was beneficial to CTL-6 growth in the adverse environment of the PCS medium. In co-culture with W2-10, the CTL-6 cellulose degradation efficiency of filter paper and alkaline-treated wheat straw significantly increased up to 72.45 and 37.79 %, respectively. The CMCase activity and biomass of CTL-6 also increased from 0.23 U ml−1 and 45.1 μg ml−1 (DNA content) up to 0.47 U ml−1 and 112.2 μg ml−1, respectively. In addition, co-culture resulted in accumulation of acetate and propionate up to 4.26 and 2.76 mg ml−1. This was a respective increase of 2.58 and 4.45 times, in comparison to the monoculture with CTL-6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Demain, A. L., Newcomb, M., & Wu, J. H. D. (2005). Microbiology and Molecular Biology Reviews, 69, 124–154.

    Article  CAS  Google Scholar 

  2. Yu, X. Q., Gao, H. Q., Liu, Q. G., & Yu, J. H. (2011). Applied Mechanics and Materials, 71, 2501–2504.

    Article  Google Scholar 

  3. Feng, Y., Yu, Y., Wang, X., Qu, Y., Li, D., He, W., et al. (2011). Bioresource Technology, 102, 742–747.

    Article  CAS  Google Scholar 

  4. Yang, H., Wu, H., Wang, X., Cui, Z., & Li, Y. (2011). Bioresource Technology, 102, 3546–3550.

    Article  CAS  Google Scholar 

  5. Zhang, X., Qiu, W., & Chen, H. (2012). Bioresource Technology, 123C, 30–35.

    Article  Google Scholar 

  6. Datar, R., Huang, J., Maness, P.-C., Mohagheghi, A., Czernik, S., & Chornet, E. (2007). International Journal of Hydrogen Energy, 32, 932–939.

    Article  CAS  Google Scholar 

  7. Haruta, S., Cui, Z., Huang, Z., Li, M., Ishii, M., & Igarashi, Y. (2002). Applied Microbiology and Biotechnology, 59, 529–534.

    Article  CAS  Google Scholar 

  8. Wang, W., Yan, L., Cui, Z., Gao, Y., Wang, Y., & Jing, R. (2011). Bioresource Technology, 102, 9321–9324.

    Article  CAS  Google Scholar 

  9. Wongwilaiwalin, S., Rattanachomsri, U., Laothanachareon, T., Eurwilaichitr, L., Igarashi, Y., & Champreda, V. (2010). Enzyme and Microbial Technology, 47, 283–290.

    Article  CAS  Google Scholar 

  10. Kato, S., Haruta, S., Cui, Z. J., Ishii, M., & Igarashi, Y. (2004). FEMS Microbiology Ecology, 51, 133–142.

    Article  CAS  Google Scholar 

  11. Odom, J. M., & Wall, J. D. (1983). Applied and Environmental Microbiology, 45, 1300–1305.

    CAS  Google Scholar 

  12. Lü, Y., Zhu, W., Cui, Z., Wang, X., Lin, C., & Cheng, X. (2009). Journal of China Agricultural University, 14, 40–46.

    Google Scholar 

  13. Lü, Y., Wang, X., Li, N., Wang, X., Ishii, M., Igarashi, Y., et al. (2011). Journal of Environmental Sciences-China, 23, 649–655.

    Article  Google Scholar 

  14. Zavarzina, D. G., Zhilina, T. N., Tourova, T. P., Kuznetsov, B. B., Kostrikina, N. A., & Bonch-Osmolovskaya, E. A. (2000). International Journal of Systematic and Evolutionary Microbiology, 50, 1287–1295.

    Article  CAS  Google Scholar 

  15. Tailliez, P., Girard, H., Millet, J., & Beguin, P. (1989). Applied and Environmental Microbiology, 55, 207–211.

    CAS  Google Scholar 

  16. Alani, F., Anderson, W., & Moo-Young, M. (2008). Biotechnology Letters, 30, 123–126.

    Article  CAS  Google Scholar 

  17. Singh, J., Batra, N., & Sobti, R. C. (2001). World Journal of Microbiology & Biotechnology, 17, 761–765.

    Article  CAS  Google Scholar 

  18. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  19. Wang, X., Haruta, S., Wang, P., Ishii, M., Igarashi, Y., & Cui, Z. (2006). FEMS Microbiology Ecology, 57, 106–115.

    Article  Google Scholar 

  20. Zhu, H., Qu, F., & Zhu, L. H. (1993). Nucleic Acids Research, 21, 5279–5280.

    Article  CAS  Google Scholar 

  21. Narisawa, N., Haruta, S., Cui, Z. J., Ishii, M., & Igarashi, Y. (2007). Journal of Bioscience and Bioengineering, 104, 432–434.

    Article  CAS  Google Scholar 

  22. Park, J. W., & Crowley, D. E. (2006). Applied Microbiology and Biotechnology, 72, 1322–1329.

    Article  CAS  Google Scholar 

  23. Lowe, S. E., Theodorou, M. K., & Trinci, A. P. (1987). Applied and Environmental Microbiology, 53, 1216–1223.

    CAS  Google Scholar 

  24. Freier, D., Mothershed, C. P., & Wiegel, J. (1988). Applied and Environmental Microbiology, 54, 204–211.

    CAS  Google Scholar 

  25. Mori, Y. (1990). Applied and Environmental Microbiology, 56, 37–42.

    CAS  Google Scholar 

  26. Lü, Y., Li, N., Gong, D., Wang, X., & Cui, Z. (2012). Applied Biochemistry and Biotechnology, 168, 219–233.

    Article  Google Scholar 

  27. Levin, D. B., Islam, R., Cicek, N., & Sparling, R. (2006). International Journal of Hydrogen Energy, 31, 1496–1503.

    Article  CAS  Google Scholar 

  28. Wiegel, J., & Dykstra, M. (1984). Applied Microbiology and Biotechnology, 20, 59–65.

    Article  CAS  Google Scholar 

  29. Fortina, M. G., Mora, D., Schumann, P., Parini, C., Manachini, P. L., & Stackebrandt, E. (2001). International Journal of Systematic and Evolutionary Microbiology, 51, 2063–2071.

    Article  CAS  Google Scholar 

  30. Nazina, T., Tourova, T., Poltaraus, A., Novikova, E., Grigoryan, A., Ivanova, A., et al. (2001). International Journal of Systematic and Evolutionary Microbiology, 51, 433–446.

    CAS  Google Scholar 

  31. Sung, M. H., Kim, H., Bae, J. W., Rhee, S. K., Jeon, C. O., Kim, K., et al. (2002). International Journal of Systematic and Evolutionary Microbiology, 52, 2251–2255.

    Article  CAS  Google Scholar 

  32. Banat, I. M., Marchant, R., & Rahman, T. J. (2004). International Journal of Systematic and Evolutionary Microbiology, 54, 2197–2201.

    Article  CAS  Google Scholar 

  33. Nazina, T. N., Sokolova, D. S., Grigoryan, A. A., Shestakova, N. M., Mikhailova, E. M., Poltaraus, A. B., et al. (2005). Systematic and Applied Microbiology, 28, 43–53.

    Article  CAS  Google Scholar 

  34. Ren, Y., Strobel, G., Sears, J., & Park, M. (2010). Microbial Ecology, 60, 130–136.

    Article  CAS  Google Scholar 

  35. Johnson, E. A., Madia, A., & Demain, A. L. (1981). Applied and Environmental Microbiology, 41, 1060–1062.

    CAS  Google Scholar 

  36. Lynd, L. R., Grethlein, H. E., & Wolkin, R. H. (1989). Applied and Environmental Microbiology, 55, 3131–3139.

    CAS  Google Scholar 

  37. Cripps, R. E., Eley, K., Leak, D. J., Rudd, B., Taylor, M., Todd, M., et al. (2009). Metabolic Engineering, 11, 398–408.

    Article  CAS  Google Scholar 

  38. Whitman, W., Bowen, T., & Boone, D. (2006). The methanogenic bacteria. In The prokaryotes (pp. 165–207). New York: Springer.

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Projects in the National Science & Technology Pillar Program during the 12th Five-Year Plan Period (No. 2011BAD15B01), and was supported by China Postdoctoral Science Foundation (No. 2011M500452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongjun Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, Y., Li, N., Yuan, X. et al. Enhancing the Cellulose-Degrading Activity of Cellulolytic Bacteria CTL-6 (Clostridium thermocellum) by Co-Culture with Non-cellulolytic Bacteria W2-10 (Geobacillus sp.). Appl Biochem Biotechnol 171, 1578–1588 (2013). https://doi.org/10.1007/s12010-013-0431-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0431-8

Keywords

Navigation