Skip to main content
Log in

Strategies for Enhancing the Production of Penicillin G Acylase from Bacillus badius: Influence of Phenyl Acetic Acid Dosage

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus badius isolated from soil has been identified as potential producer of penicillin G acylase (PGA). In the present study, batch experiments performed at optimized inoculum size, temperature, pH, and agitation yielded a maximum PGA of 9.5 U/ml in shake flask. The experiments conducted in bioreactor with different oxygen flow rates revealed that 0.66 vvm oxygen flow rate could be sufficient for the maximum PGA activity of 12.7 U/ml. From a detailed investigation on the strategies of the addition of phenyl acetic acid (PAA) for increasing the production of PGA, it was found that the controlled addition of 10 ml of 0.1 % (w/v) PAA once in every 2 h from 6th hour of growth showed the maximum PGA activity of 32 U/ml. Thus, our studies for the first time showed that at concentration above 0.1 % (w/v) PAA, the PGA production decreased. This selective condition paves the way for less costly bioprocess for the production of PGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cai, G., Zhu, S., Yang, S., Zhao, G., & Jiang, W. (2004). Applied and Environmental Microbiology, 70, 2764–2770.

    Article  CAS  Google Scholar 

  2. McDonough, A. M., Klei, E. H., & Kelly, A. J. (1996). Protein Science, 8, 1971–1981.

    Article  Google Scholar 

  3. Sakaguchi, K., & Murao, S. (1950). Journal of the Agricultural Chemical Society of Japan, 23, 411.

    Article  CAS  Google Scholar 

  4. Elander, R. P. (2003). Applied Microbiology Biotechnology, 61, 385–392.

    CAS  Google Scholar 

  5. de Souza, V. R., Silva, A. C. G., Pinotti, L. M., Araujo, H. S. S., & Giordano, D. L. M. C. (2005). Brazilian Archives of Biology and Technology, 48, 105–111.

    Google Scholar 

  6. AnujChandel, K., VenkateswarRao, L., Lakshmi Narasu, M., & Om Singh, V. (2008). Enzyme and Microbial Technology, 42, 199–207.

    Article  Google Scholar 

  7. Cole, M. (1969). Biochemical Journal, 115, 733–739.

    CAS  Google Scholar 

  8. Oh, S. J., Kim, Y. C., Park, Y. W., Min, S. Y., Kim, I. S., & Kang, H. S. (1987). Gene, 56, 87–97.

    Article  CAS  Google Scholar 

  9. Barbero, J. L., Buesa, M. J., Gonzalez de Buitrago, G., Mendez, E., Perez Aranda, A., & Garcia, L. J. (1986). Gene, 49, 69–80.

    Article  CAS  Google Scholar 

  10. Konstantinovic, M., Marjanovic, N., Ljubijankic, G., & Glisin, V. (1994). Gene, 143, 79–83.

    Article  CAS  Google Scholar 

  11. Ljubijankic, G. M., Konstantinovic, M., & Glisin, V. (1992). DNA Sequence, 3, 195–200.

    CAS  Google Scholar 

  12. Martin, L., Prieto, M. A., Cortes, E., & Garcıa, J. L. (1995). FEMS Microbiology Letters, 125, 287–292.

    Article  CAS  Google Scholar 

  13. Verhaert, R. M. D., Riemens, A. M., Laan, J., Duin, J., & Quax, W. J. (1997). Applied Environmental and Microbiology, 63, 3412–3418.

    CAS  Google Scholar 

  14. Nucci, E. R., Silva, R. G., Gomes, T. C., Giordano, R. C., & Cruz, A. J. G. (2005). Brazilian Journal of Chemical Engineering, 22, 521–527.

    Article  CAS  Google Scholar 

  15. Sobotkova, L., Stepanek, V., Plhackova, K., & Kyslik, P. (1996). Enzyme and Microbial Technology, 19, 389–397.

    Article  CAS  Google Scholar 

  16. Alvaro, G., Fernandez Lafuente, R., Rosell, C. M., Blanco, R. M., Garcia Lopez, J. L., & Guisan, J. M. (1992). Biotecnolology Letter, 14, 285–290.

    Article  CAS  Google Scholar 

  17. Yang, S. L., Wu, R. P., Wang, J. X., He, J. S., & Zhang, S. B. (1988). Chinese Journal of Biotechnology, 4, 32–37.

    Google Scholar 

  18. Jiang, Q. L., Wu, R. P., & Yang, S. L. (1992). Chinese Journal of Biotechnology, 8, 213–217.

    CAS  Google Scholar 

  19. Keilmann, C., Wanner, G., & Bock, A. (1993). Biological Chemistry Hoppe-Seyler, 374, 983–992.

    Article  CAS  Google Scholar 

  20. Merino, E., Balbas, P., Recillas, F., Becerril, B., Valle, F., & Bolivar, F. (1992). Molecular Microbiology, 6, 2175–2182.

    Article  CAS  Google Scholar 

  21. Rajendran, J., Krishnakumar, V., & Gunasekaran, P. (2003). World Journal of Microbiology and Biotechnology, 19, 107–110.

    Article  Google Scholar 

  22. Oliver, G., Valle, F., Rosetti, F., Gomez-Pedrozo, M., Santamaria, P., Gosset, G., et al. (1985). Gene, 40, 9–14.

    Article  CAS  Google Scholar 

  23. Robas, N., Zouheiry, H., Branland, G., & Branland, C. (1993). Biotechnology and Bioengineering, 41, 14–24.

    Article  CAS  Google Scholar 

  24. Gumusel, F. (2001). SalihaIsseverOzturk, NeseKiremitKorkut, CigdemGelegen, &Engin Bermek. Enzyme MicrobialTechnology, 29, 499–505.

    Article  CAS  Google Scholar 

  25. Dai, M., Zhu, Y., Yang, Y., Wang, E., Xie, Y., Zhao, G., et al. (2001). European journal of Biochemistry, 268(5), 1298–1303.

    Article  CAS  Google Scholar 

  26. Ignatova, Z., Enfors, S. O., Hobbie, M., Taruttis, S., Vogt, C., & Kasche, V. (2000). Enzyme Microbial Technology, 26, 165–170.

    Article  CAS  Google Scholar 

  27. Rajendhran, J., Krishnakumar, V., & Gunasekaran, P. (2002). Letters in Applied Microbiology, 35, 523–527.

    Article  CAS  Google Scholar 

  28. Karthikeyan, R., Surianarayanan, M., Sudharshan, S., Gunasekaran, P., & Mandal, A. B. (2011). Biochemical Engineering Journal, 55, 223–229.

    Article  CAS  Google Scholar 

  29. Meevootisom, V., & Saunders, J. R. (1987). Applied Microbiology Biotechnology., 25, 372–378.

    Article  CAS  Google Scholar 

  30. Lenka, S., Jana, G., & Pavel, K. (2002). Enzyme Microbial Technology, 31(7), 992–999.

    Article  Google Scholar 

  31. Sudhakaran, V. K., & Borkar, P. S. (1989). Hindustan Antibiotics Bulletin, 31, 1–14.

    CAS  Google Scholar 

  32. Chou, C. P., Tseng, J. H., Lin, M. I., Lin, H. K., & Yu, C. C. (1999). Journal of Biotechnology, 69(1), 27–38.

    Article  CAS  Google Scholar 

  33. Vandamme, E. J., & Voets, J. P. (1974). Advances in Applied Microbiology, 17, 311–369.

    Article  CAS  Google Scholar 

  34. Senthilvel, G. S., & Pai, S. J. (1998). Journal of Scientific & Industrial Research, 57, 781–784.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wishes to acknowledge the Principal of Mepco Schlenk Engineering College for the kind permission to publish the paper. The authors wish to express their gratitude to Prof. NR Rajagopal for encouragement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Surianarayanan Mahadevan or Asit Baran Mandal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajendran, K., Mahadevan, S., Jeyaprakash, R. et al. Strategies for Enhancing the Production of Penicillin G Acylase from Bacillus badius: Influence of Phenyl Acetic Acid Dosage. Appl Biochem Biotechnol 171, 1328–1338 (2013). https://doi.org/10.1007/s12010-013-0425-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0425-6

Keywords

Navigation