Skip to main content
Log in

Dynamic Changes in Xylanases and β-1,4-Endoglucanases Secreted by Aspergillus niger An-76 in Response to Hydrolysates of Lignocellulose Polysaccharide

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Aspergillus niger is an effective secretor of glycoside hydrolases that facilitate the saprophytic lifestyle of the fungus by degrading plant cell wall polysaccharides. In the present study, a series of dynamic zymography assays were applied to quantify the secreted glycoside hydrolases of A. niger cultured in media containing different carbon sources. Differences in the diversity and concentrations of polysaccharide hydrolysates dynamically regulated the secretion of glycoside hydrolases. The secretion of β-1,4-endoglucanase isozymes was observed to lag at least 24 h behind, rather than coincide with, the secretion of xylanase isozymes. Low concentrations of xylose could induce many endoxylanases (such as Xyn1/XynA, Xyn2, and Xyn3/XynB). High concentrations of xylose could sustain the induction of Xyn2 and Xyn3/XynB but repress Xyn1/XynA (GH10 endoxylanase), which has a broad substrate specificity, and also triggers the low-level secretion of Egl3/EglA, which also has a broad substrate specificity. Mixed polysaccharide hydrolysates sustained the induction of Egl1, whereas the other β-1,4-endoglucanases were sustainably induced by the specific polysaccharide hydrolysates released during the hydrolysis process (such as Egl2 and Egl4). These results indicate that the secretion of glycoside hydrolases may be specifically regulated by the production of polysaccharide hydrolysates released during the process of biomass degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dashtban, M., Schraft, H., & Qin, W. (2009). International Journal of Biological Sciences, 5, 578–595.

    Article  CAS  Google Scholar 

  2. de Vries, R. P., & Visser, J. (2001). Microbiology and Molecular Biology Reviews, 65, 497–522.

    Article  Google Scholar 

  3. Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., et al. (2007). Science, 315, 804–807.

    Article  CAS  Google Scholar 

  4. Lynd, L. R., Wyman, C. E., & Gerngross, T. U. (1999). Biotechnology Progress, 15, 777–793.

    Article  CAS  Google Scholar 

  5. Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., et al. (2008). Nature Biotechnology, 26, 169–172.

    Article  CAS  Google Scholar 

  6. Ding, S. Y., & Himmel, M. E. (2006). Journal of Agricultural and Food Chemistry, 54, 597–606.

    Article  CAS  Google Scholar 

  7. Cosgrove, D. J. (2005). Nature Reviews. Molecular Cell Biology, 6, 850–861.

    Article  CAS  Google Scholar 

  8. Rubin, E. M. (2008). Nature, 454, 841–845.

    Article  CAS  Google Scholar 

  9. van den Brink, J., & de Vries, R. P. (2011). Applied Microbiology and Biotechnology, 91, 1477–1492.

    Article  CAS  Google Scholar 

  10. Pel, H. J., de Winde, J. H., Archer, D. B., Dyer, P. S., Hofmann, G., Schaap, P. J., et al. (2007). Nat. Biotechnol, 25, 221–231.

    Article  Google Scholar 

  11. Andersen, M. R., Nielsen, M. L., & Nielsen, J. (2008). Molecular Systems Biology, 4, 178.

    Article  Google Scholar 

  12. Baker, S. E. (2006). Medical Mycology, 44, 17–21.

    Article  Google Scholar 

  13. Andersen, M. R., Salazar, M. P., Schaap, P. J., van de Vondervoort, P. J. I., Culley, D., Thykaer, J., et al. (2011). Genome Research, 21, 885–897.

    Article  CAS  Google Scholar 

  14. Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., et al. (2008). Nature Biotechnology, 26, 553–560.

    Article  CAS  Google Scholar 

  15. Lu, X., Sun, J., Nimtz, M., Wissing, J., Zeng, A. P., & Rinas, U. (2010). Microbial Cell Factories, 9, 23.

    Article  Google Scholar 

  16. Adav, S. S., Chao, L. T. and Sze, S. K. (2012). Molecular & Cellular Proteomics, 11

  17. Wilson, D. B. (2011). Current Opinion in Microbiology, 14, 259–263.

    Article  CAS  Google Scholar 

  18. Alon, U. (2007). An Introduction to Systems Biology: Design Principles of Biological Circuits. ed. CRC press.

  19. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  20. Dekel, E., & Alon, U. (2005). Nature, 436, 588–592.

    Article  CAS  Google Scholar 

  21. Zaslaver, A., Mayo, A. E., Rosenberg, R., Bashkin, P., Sberro, H., Tsalyuk, M., et al. (2004). Nature Genetics, 36, 486–491.

    Article  CAS  Google Scholar 

  22. Stricker, A. R., Mach, R. L., & de Graaff, L. H. (2008). Applied Microbiology and Biotechnology, 78, 211–220.

    Article  CAS  Google Scholar 

  23. Foreman, P. K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N. S., et al. (2003). The Journal of Biological Chemistry, 278, 31988–31997.

    Article  Google Scholar 

  24. Kostylev, M., & Wilson, D. (2012). Biofuels, 3, 61–70.

    Article  CAS  Google Scholar 

  25. Wang, L., Zhang, Y., Gao, P., Shi, D., Liu, H., & Gao, H. (2006). Biotechnology and Bioengineering, 93, 443–456.

    Article  CAS  Google Scholar 

  26. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  27. Dashtban, M., Buchkowski, R., & Qin, W. (2011). International Journal of Biochemistry and Molecular Biology, 2, 274–286.

    CAS  Google Scholar 

  28. Chen, H., Gao, P., & Wang, Z. (1990). Acta Microbiologica Sinica, 30, 351–357.

    Google Scholar 

  29. Jørgensen, T., Goosen, T., van den Hondel, C., Ram, A., & Iversen, J. (2009). BMC Genomics, 10, 44.

    Article  Google Scholar 

  30. Gao, P., Qu, Y., Zhao, X., Zhu, M., & Duan, Y. (1997). Enzyme and Microbial Technology, 20, 581–584.

    Article  CAS  Google Scholar 

  31. Margolles-clark, E., Ihnen, M., & Penttila, M. (1997). Journal of Biotechnology, 57, 167–179.

    Article  CAS  Google Scholar 

  32. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  33. Levasseur, A., Asther, M., & Record, E. (2005). Canadian Journal of Microbiology, 51, 177–183.

    Article  CAS  Google Scholar 

  34. Narasimha, G., Sridevi, A., Buddolla, V., Subhosh, C. M., & Rajasekhar, R. B. (2006). African Journal of Biotechnology, 5(5), 472–476.

    CAS  Google Scholar 

  35. Zhang, X., Liu, N., Yang, F., Li, J., Wang, L., Chen, G., et al. (2012). Electrophoresis, 33, 280–287.

    Article  Google Scholar 

  36. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., & Mann, M. (2006). Nature Protocols, 1, 2856–2860.

    Article  CAS  Google Scholar 

  37. Jackson, P. (1990). The Biochemical Journal, 270, 705–713.

    CAS  Google Scholar 

  38. Zhang, Y. H. P., & Lynd, L. R. (2003). Analytical Biochemistry, 322, 225–232.

    Article  CAS  Google Scholar 

  39. Viniegra-Gonzále, G., Favela-Torres, E., Aguilar, C. N., Rómero-Gomez, S. J., Díaz-Godínez, G., & Augur, C. (2003). Biochemical Engineering Journal, 13, 157–167.

    Article  Google Scholar 

  40. Beesley, T. E., Buglio, B. and Scott, R. P. W. (2001). Quantitative Chromatographic Analysis. ed. CRC.

  41. Mach-Aigner, A. R., Omony, J., Jovanovic, B., van Boxtel, A. J. B., & de Graaff, L. H. (2012). Applied and Environmental Microbiology, 78, 3145–3155.

    Article  CAS  Google Scholar 

  42. Olivares-Hernández, R., Usaite, R., & Nielsen, J. (2010). Biotechnology and Bioengineering, 107, 865–875.

    Article  Google Scholar 

  43. Mach-Aigner, A. R., Pucher, M. E., & Mach, R. L. (2010). Applied and Environmental Microbiology, 76, 1770–1776.

    Article  CAS  Google Scholar 

  44. Zeilinger, S., Mach, R. L., Schindler, M., Herzog, P., & Kubicek, C. P. (1996). The Journal of Biological Chemistry, 271, 25624–25629.

    Article  CAS  Google Scholar 

  45. Dodd, D., & Cann, I. K. (2009). GCB Bioenergy, 1, 2–17.

    Article  CAS  Google Scholar 

  46. Khandeparker, R., & Numan, M. T. (2008). Journal of Industrial Microbiology and Biotechnology, 35, 635–644.

    Article  CAS  Google Scholar 

  47. Powlowski, J., Mahajan, S., Schapira, M., & Master, E. R. (2009). Carbohydrate Research, 344, 1175–1179.

    Article  CAS  Google Scholar 

  48. Aro, N., Pakula, T., & Penttilä, M. (2005). FEMS Microbiology Reviews, 29, 719–739.

    Article  CAS  Google Scholar 

  49. Galazka, J. M., Tian, C., Beeson, W. T., Martinez, B., Glass, N. L., & Cate, J. H. D. (2010). Science, 330, 84–86.

    Article  CAS  Google Scholar 

  50. Jojima, T., Omumasaba, C. A., Inui, M., & Yukawa, H. (2010). Applied Microbiology and Biotechnology, 85, 471–480.

    Article  CAS  Google Scholar 

  51. Burton, R. A., Gidley, M. J., & Fincher, G. B. (2010). Nature Chemical Biology, 6, 724–732.

    Article  CAS  Google Scholar 

  52. Coutinho, P. M., Andersen, M. R., Kolenova, K., VanKuyk, P. A., Benoit, I., Gruben, B. S., et al. (2009). Fungal Genetics and Biology, 46(Suppl 1), S161–S169.

    Article  CAS  Google Scholar 

  53. Znameroski, E. A., Coradetti, S. T., Roche, C. M., Tsai, J. C., Iavarone, A. T., Cate, J. H. D., et al. (2012). Proceedings of the National Academy of Sciences USA, 109, 6012–6017.

    Article  CAS  Google Scholar 

  54. Hori, C., Suzuki, H., Igarashi, K., & Samejima, M. (2012). Applied and Environmental Microbiology, 78, 3770–3773.

    Article  CAS  Google Scholar 

  55. Furukawa, T., Shida, Y., Kitagami, N., Mori, K., Kato, M., Kobayashi, T., et al. (2009). Fungal Genetics and Biology, 46, 564–574.

    Article  CAS  Google Scholar 

  56. Igarashi, K., Uchihashi, T., Koivula, A., Wada, M., Kimura, S., Okamoto, T., et al. (2011). Science, 333, 1279–1282.

    Article  CAS  Google Scholar 

  57. Raman, B., Pan, C., Hurst, G. B., Rodriguez, M., Jr., McKeown, C. K., Lankford, P. K., et al. (2009). PloS One, 4, e5271.

    Article  Google Scholar 

  58. Bahari, L., Gilad, Y., Borovok, I., Kahel-Raifer, H., Dassa, B., Nataf, Y., et al. (2011). Journal of Industrial Microbiology & Biotechnology, 38, 825–832.

    Article  CAS  Google Scholar 

  59. Schmoll, M., & Kubicek, C. P. (2003). Acta Microbiologica et Immunologica Hungarica, 50, 125–145.

    Article  CAS  Google Scholar 

  60. Himmel, M. E. (2008). Biomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy. ed. Blackwell Pub.

  61. Wilson, D. B. (2012). Applied Microbiology and Biotechnology, 93, 497–502.

    Article  CAS  Google Scholar 

  62. Kurašin, M., & Väljamäe, P. (2011). The Journal of Biological Chemistry, 286, 169–177.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Yinbo Qu, Bin Huang, Dandan Li, and Xiaomei Zhang for their critical reading of the manuscript. This work was supported by grants from the Major State Basic Research Development Research Program of China (grant no. 2011CB707401) and the National Natural Science Foundation of China (30970092, 31170071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lushan Wang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, S., Li, G., Sun, X. et al. Dynamic Changes in Xylanases and β-1,4-Endoglucanases Secreted by Aspergillus niger An-76 in Response to Hydrolysates of Lignocellulose Polysaccharide. Appl Biochem Biotechnol 171, 832–846 (2013). https://doi.org/10.1007/s12010-013-0402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0402-0

Keywords

Navigation