Skip to main content
Log in

Towards Industrially Feasible Treatment of Potato Starch Processing Waste by Mixed Cultures

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study aimed at reducing the pollution of the waste generated by the potato starch industry to the environment and transform the potato pulp and wastewater into single-cell protein (SCP) to be used as animal feed. The chemical oxygen demand of the wastewater was reduced from 26,700 to 9,100 mg/L by batch fermentation with mixed cultures in an aerated 10-L fermenter. The SCP products, with a crude protein content of 46.09 % (higher than soybean meal), were found palatable and safe for mice. During the treatment process, the microbial community was analyzed using the terminal restriction fragment length polymorphism for bacterial 16S rRNA genes. The results of the analysis suggested that Curacaobacter/Pseudoalteromonas and Paenibacillus/Bacillus were the main microorganisms in treating potato starch processing wastes. The 150-m3-scale fermentation demonstrated a potential for treatment in industrial applications. Fermentation of potato pulp and wastewater without adding an extra nitrogen source was a novel approach in treating the potato starch processing waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fang, C., Boe, K., & Angelidaki, I. (2011). Bioresource Technology, 102(10), 5734–5741.

    Article  CAS  Google Scholar 

  2. Suzuki, S., Fukuoka, M., Tada, S., Matsushita-Morita, M., Hattori, R., Kitamoto, N., et al. (2010). Food Science and Technology Research, 16(5), 517–521.

    Article  CAS  Google Scholar 

  3. Cibis, E., Krzywonos, M., & Miskiewicz, T. (2006). Bioresource Technology, 97(4), 679–685.

    Article  CAS  Google Scholar 

  4. Cibis, E., Kent, C. A., Krzywonos, M., Garncarek, Z., Garncarek, B., & Miskiewicz, T. (2002). Bioresource Technology, 85(1), 57–61.

    Article  CAS  Google Scholar 

  5. Krzywonos, M., Cibis, E., Miskiewicz, T., & Kent, C. A. (2008). Bioresource Technology, 99(16), 7816–7824.

    Article  CAS  Google Scholar 

  6. Krzywonos, M., Cibis, E., Lasik, M., Nowak, J., & Miskiewicz, T. (2009). Bioresource Technology, 100(9), 2507–2514.

    Article  CAS  Google Scholar 

  7. Lasik, M., Nowak, J., Krzywonos, M., & Cibis, E. (2010). Bioresource Technology, 101(10), 3444–3451.

    Article  CAS  Google Scholar 

  8. Noah, K. S., Bruhn, D. F., & Bala, G. A. (2005). Applied Biochemistry and Biotechnology, 121, 465–473.

    Article  Google Scholar 

  9. Mayer, F., & Hillebrandt, J. O. (1997). Applied Microbiology and Biotechnology, 48(4), 435–440.

    Article  CAS  Google Scholar 

  10. Wang, T. Y., Wu, Y. H., Jiang, C. Y., & Liu, Y. (2010). British Poultry Science, 51(2), 229–234.

    Article  CAS  Google Scholar 

  11. Aziz, N. H., & Mohsen, G. I. (2002). Journal of Industrial Microbiology & Biotechnology, 29(5), 264–267.

    Article  CAS  Google Scholar 

  12. Ugwuanyi, J. O., Harvey, L. M., & McNeil, B. (2005). Bioresource Technology, 96(6), 707–719.

    Article  CAS  Google Scholar 

  13. Ike, M., Inoue, D., Miyano, T., Liu, T. T., Sei, K., Soda, S., et al. (2010). Bioresource Technology, 101(11), 3952–3957.

    Article  CAS  Google Scholar 

  14. Liu, W. T., Marsh, T. L., Cheng, H., & Forney, L. J. (1997). Applied and Environmental Microbiology, 63(11), 4516–4522.

    CAS  Google Scholar 

  15. Liu, D. T., Yang, Q., Wang, Y. J., & Zhang, X. D. (2010). Acta Energiae Solaris Sinica, 01, 107–112.

    Google Scholar 

  16. Nigam, P., & Vogel, M. (1991). Biomass and Bioenergy, 1(6), 339–345.

    Article  CAS  Google Scholar 

  17. Pitwell, L. R. (1983). Chemistry in Britain, 19, 907.

    Google Scholar 

  18. Zepka, L. Q., Jacob-Lopes, E., Goldbeck, R., Souza-Soares, L. A., & Queiroz, M. I. (2010). Bioresource Technology, 101(18), 7107–7111.

    Article  CAS  Google Scholar 

  19. Cohen, J. B. (1908). Practical Organic Chemistry (2nd ed., pp. 20–21). Limited, London: Macmillan and Co.

    Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). The Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  21. Aharoni, Y., Brosh, A., Orlov, A., Shargal, E., & Gutman, A. (2004). Livestock Production Science, 90(2–3), 89–100.

    Article  Google Scholar 

  22. Holder, N. H. M., Kilian, S. G., & Dupreez, J. C. (1989). Biological Wastes, 28(4), 239–246.

    Article  CAS  Google Scholar 

  23. Nigam, J. N. (2000). World Journal of Microbiology and Biotechnology, 16(4), 367–372.

    Article  CAS  Google Scholar 

  24. Ichii, T., Takehara, S., Konno, H., Ishida, T., Sato, H., Suzuki, A., et al. (1993). Journal of Fermentation and Bioengineering, 75(5), 375–379.

    Article  CAS  Google Scholar 

  25. Rajoka, M. I., Khan, S. H., Jabbar, M. A., Awan, M. S., & Hashmi, A. S. (2006). Bioresource Technology, 97(15), 1934–1941.

    Article  CAS  Google Scholar 

  26. Zhou, S. D., McCaskey, T. A., & Broder, J. (1996). Applied Biochemistry and Biotechnology, 57–8, 517–524.

    Article  Google Scholar 

  27. Zayed, G., & Mostafa, N. (1992). Biomass and Bioenergy, 3(5), 363–367.

    Article  CAS  Google Scholar 

  28. Gonzalez-Benito, G., Barrocal, V., Bolado, S., Coca, M., & Garcia-Cubero, M. T. (2009). New Biotechnology, 25, S262.

    Article  Google Scholar 

  29. Yang, M. H., Zhang, A. M., Liu, B. B., Li, W. L., & Xing, J. M. (2011). Biochemical Engineering Journal, 56(3), 125–129.

    Article  CAS  Google Scholar 

  30. Lu, Y. C., Li, N., Gong, D. C., Wang, X. F., & Cui, Z. J. (2012). Applied Biochemistry and Biotechnology, 168(2), 219–233.

    Article  Google Scholar 

  31. Urakami, T., Harada, R., Ochiai, H., Niwayama, S., & Miyamura, S. (1983). Nihon saikingaku zasshi. Japanese Journal of Bacteriology, 38(3), 637–643.

    Article  CAS  Google Scholar 

  32. Bacha, U., Nasir, M., Khalique, A., Anjum, A. A., & Jabbar, M. A. (2011). Journal of Animal and Plant Sciences, 21(4), 844–849.

    CAS  Google Scholar 

  33. Uchida, M., Nakata, K., & Maeda, M. (1997). Journal of Applied Phycology, 9(6), 541–549.

    Google Scholar 

Download references

Acknowledgement

The authors wish to thank the Chinese government for the financial support of this study under the National High Technology Research and Development Program 2011AA10A205 and Heilongjiang Province Technological Project GA08C201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Song, J., Li, Y. et al. Towards Industrially Feasible Treatment of Potato Starch Processing Waste by Mixed Cultures. Appl Biochem Biotechnol 171, 1001–1010 (2013). https://doi.org/10.1007/s12010-013-0401-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0401-1

Keywords

Navigation