Skip to main content
Log in

Synthesis, Characterization, and Antimicrobial Activity of Poly(acrylonitrile-co-methyl methacrylate) with Silver Nanoparticles

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nanotechnology is expected to open some new aspects to fight and prevent diseases using atomic-scale tailoring of materials. The main aim of this study is to biosynthesize silver nanoparticles (AgNPs) using Trichoderma viride (HQ438699); the metabolite of this fungus will help either in reduction of the silver nitrate-adding active materials which will be loaded on the surface of the produced AgNPs. Poly(acrylonitrile-co-methyl methacrylate) copolymer (poly (AN-co-MMA)) was grafted with the prepared AgNPs. The poly(AN-co-MMA)/AgNPs were examined against ten different pathogenic bacterial strains, and the result was compared with another four different generic antibiotics. The produced poly(AN-co-MMA)/AgNPs showed high antibacterial activity compared with the four standard antibiotics. Moreover, the grafting of these AgNPs into the copolymer has potential application in the biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Reaction scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Curtis, A., & Wilkinson, C. (2001). Trends in Biotechnology, 19, 97–101.

    Article  CAS  Google Scholar 

  2. Farokhzad, O., Cheng, J., Teply, B., Sherifi, I., Jon, S., Kantoff, P., Richie, J., & Langer, R. (2006). Proceedings of the National Academy of Sciences, 103, 6315–6320.

    Article  CAS  Google Scholar 

  3. Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N., Sharma, V., Nevecna, T., & Zboril, R. (2006). Physics Chemistry B, 110, 16248–16253.

    Article  CAS  Google Scholar 

  4. Feng, Q., Wu, J., Chen, G., Cui, F., Kim, T., & Kim, J. (2000). Biomedical Materials Research A, 52, 662–668.

    Article  CAS  Google Scholar 

  5. El-Rafie, M., El-Naggar, M., Ramadan, M., Fouda, M., Al-Deyab, S., & Hebeish, A. (2011). Carbohydrate Polymers, 86(2), 630–635.

    Article  CAS  Google Scholar 

  6. Holladay, R., Moellar, W., Mehta, D., Brooks, J., Roy, R., Mortenson, M. (2006). European Patent Office, number W02105US4769920051230.

  7. Babu, R., Zhang, J., Beckman, E., Virji, M., Pasculle, W., & Wells, A. (2006). Biomaterials, 27, 4304–4314.

    Article  CAS  Google Scholar 

  8. Link, S., & El-Sayed, M. (2003). Annual Review of Physical Chemistry, 54, 331–366.

    Article  CAS  Google Scholar 

  9. Saskia, A. (1997). Chemical Society Reviews, 26, 233–238.

    Article  Google Scholar 

  10. Maneerung, T., Tokura, S., & Rujiravanit, R. (2008). Carbohydrate Polymers, 72, 43–51.

    Article  CAS  Google Scholar 

  11. Cui, X., Liu, G., & Lin, Y. (2005). Nanomedicine, 1(2), 130–135.

    Article  CAS  Google Scholar 

  12. Cho, K., Park, J., Osaka, T., & Park, S. (2005). Electrochimica Acta, 51, 956–960.

    Article  CAS  Google Scholar 

  13. Shahverdi, A., Fakhimi, A., Shahverdi, H., & Minaian, S. (2007). Nanomedicine, 3(2), 168–171.

    Article  CAS  Google Scholar 

  14. Rai, M., Yadav, A., & Gade, A. (2009). Biotechnology Advances, 27(1), 76–83.

    Article  CAS  Google Scholar 

  15. Gong, P., Li, H., He, X., Wang, K., Hu, J., Zhang, S., & Yang, X. (2007). Nanotechnology, 18(28), 604–611.

    Article  Google Scholar 

  16. Jeong, S., Hwang, Y., & Yi, S. (2005). Journal of Materials Science, 40, 5413–5418.

    Article  CAS  Google Scholar 

  17. Goffeau, A. (2008). Nature, 452, 541–542.

    Article  CAS  Google Scholar 

  18. Denning, W. (1991). Antimicrobials and Chemotherapy, 28, 1–16.

    Article  Google Scholar 

  19. Ellis, M., Richardson, M., & de Pauw, B. (2000). British Hospital Medicine, 61(9), 605–609.

    CAS  Google Scholar 

  20. Odds, C., Brown, J., & Gow, A. (2003). Trends in Microbiology, 11(6), 272–279.

    Article  CAS  Google Scholar 

  21. Berger, T., Spardaro, J., Bierman, R., Chapin, S., & Becker, R. (1976). Antimicrobial Agents and Chemotherapy, 10, 856–860.

    Article  CAS  Google Scholar 

  22. Hamouda, T., Myc, A., Donovan, B., Shih, A., Reuter, J., & Baker, J. (2001). Microbiology Research, 156, 1–7.

    Article  CAS  Google Scholar 

  23. Sondi, I., & Salopek-Sondi, B. (2004). Colloid Interface Science, 275, 177–182.

    Article  CAS  Google Scholar 

  24. Dev, N., & Dawande, A. (2010). Journal of Biotechnology Research, 1, 39–44.

    Google Scholar 

  25. Elad, Y., & Freeman, S. (2002). Agricultural Applications, 5, 93–109.

    Article  Google Scholar 

  26. Downey, J., Frank, R., Li, W., & Stover, H. (1999). Macromolecules, 32, 2838–2844.

    Article  CAS  Google Scholar 

  27. Naka, Y., & Yamamoto, Y. (1992). Polymer Chemistry A, 30, 1287–1298.

    Article  CAS  Google Scholar 

  28. Ye, L., Cormack, P., & Mosbach, K. (1999). Analytical Communications, 36, 35–38.

    Article  CAS  Google Scholar 

  29. Wei, S., Molinelli, A., & Mizaikoff, B. (2006). Biosensors and Bioelectronics, 21, 1943–1951.

    Article  CAS  Google Scholar 

  30. Varga, J., Kocsube, S., Toth, B., Frisvad, C., Perrone, G., Susca, A., Meiijjer, M., & Samson, R. (2007). International Journal of Systematic and Evolutionary Microbiology, 57, 1925–1932.

    Article  CAS  Google Scholar 

  31. Merritt, S. (1962). American Journal of Clinical Pathology, 38, 203–206.

    Google Scholar 

  32. El-Aassar, M. (2013). Journal of Molecular Catalysis B: Enzymatic, 85, 141–148.

    Google Scholar 

  33. Mohy Eldin, M., El Zatahry, A., El-Sabbah, M., & Elaassar, M. (2012). Applied Polymer Science, 125, 1724–1735.

    Article  CAS  Google Scholar 

  34. El-Aassar, M., Al-Deyab, S., & Kenawy, E. (2012). Applied Polymer Science, 127, 1873–1884.

    Article  Google Scholar 

  35. Shi, S., Hosoi, K., & Kubota, H. (2005). Polymer, 46, 3567–3570.

    Article  CAS  Google Scholar 

  36. Chen, X., & Schluesener, J. (2008). Toxicology Letters, 176(1), 1–12.

    Article  CAS  Google Scholar 

  37. Morones, J., Elechiguerra, R., Camacho, J., Holt, A., Kouri, K., & Ramirez, J. (2005). Nanotechnology, 16, 2346–2353.

    Article  CAS  Google Scholar 

  38. Wei, S., Wei, S., Hu, S., & Tang, J. (2010). Advances in Materials Research, 94, 152–153.

    Google Scholar 

  39. Abd El-Mohdy, H. (2013). Polymer Research, 20, 177.

    Article  Google Scholar 

  40. Kowshik, M., Ashtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S., & Paknikar, K. (2003). Nanotechnology, 14, 95–100.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no. RGP-VPP-201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. El-Aassar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Aassar, M.R., Hafez, E.E., Fouda, M.M.G. et al. Synthesis, Characterization, and Antimicrobial Activity of Poly(acrylonitrile-co-methyl methacrylate) with Silver Nanoparticles. Appl Biochem Biotechnol 171, 643–654 (2013). https://doi.org/10.1007/s12010-013-0395-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0395-8

Keywords

Navigation