Skip to main content
Log in

Pigment Production by Filamentous Fungi on Agro-Industrial Byproducts: an Eco-Friendly Alternative

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The search for new sources of natural pigments has increased, mainly because of the toxic effects caused by synthetic dyes used in food, pharmaceutical, textile, and cosmetic industries. Fungi provide a readily available alternative source of natural pigments. In this context, the fungi Penicillium chrysogenum IFL1 and IFL2, Fusarium graminearum IFL3, Monascus purpureus NRRL 1992, and Penicillium vasconiae IFL4 were selected as pigments producers. The fungal identification was performed using ITS and part of the β-tubulin gene sequencing. Almost all fungi were able to grow and produce water-soluble pigments on agro-industrial residues, with the exception of P. vasconiae that produced pigments only on potato dextrose broth. The production of yellow pigments was predominant and the two strains of P. chrysogenum were the largest producers. In addition, the production of pigments and mycotoxins were evaluated in potato dextrose agar using TOF-MS and TOF-MS/MS. Metabolites as roquefortine C, chrysogine were found in both extracts of P. chrysogenum, as well fusarenone X, diacetoxyscirpenol, and neosolaniol in F. graminearum extract. In the M. purpureus extract, the pigments monascorubrin, rubropunctatin, and the mycotoxin citrinin were found. The crude filtrates have potential to be used in the textile industry; nevertheless, additional pigment purification is required for food and pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Radzio, R., & Kück, U. (1997). Process Biochemistry, 32, 529–539.

    Article  CAS  Google Scholar 

  2. Hajjaj, H., Blanc, P. J., Goma, G., & François, J. (1998). FEMS Microbiology Letters, 164, 195–200.

    Article  CAS  Google Scholar 

  3. Mapari, S. A. S., Meyer, A. S., & Thrane, U. (2008). Biotechnology Letters, 30, 2183–2190.

    Article  CAS  Google Scholar 

  4. Rajasekaran, R., Chandrasekaran, R., & Muthuselvam, M. (2008). Advances in Biotechnology, 7, 19–25.

    Article  Google Scholar 

  5. Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Bioresource Technology, 74, 69–80.

    Article  CAS  Google Scholar 

  6. Soccol, C. R., & Vandenberghe, L. P. S. (2003). Biochemical Engineering Journal, 13, 205–218.

    Article  CAS  Google Scholar 

  7. Daroit, D. J., Silveira, S. T., Hertz, P. F., & Brandelli, A. (2007). Process Biochemistry, 42, 904–908.

    Article  CAS  Google Scholar 

  8. Singhania, R.R.; Soccol, C.R.; Pandley, A. (2008) Application of tropical agro-industrial residues as substrate for solid-state fermentation processes. In: Current developments in solid-state fermentation, Springer Science+Business, New York.

  9. Lopes, F. C., Dedavid e Silva, L. A., Tichota, D. M., Daroit, D. J., Velho, R. V., Pereira, J. Q., Côrrea, A. P. F., & Brandelli, A. (2011). Enzyme Research. doi:10.4061/2011/487093.

  10. Horisawa, S., Sakuma, Y., & Doi, S. (2009). Journal of Wood Science, 55, 133–138.

    Article  CAS  Google Scholar 

  11. Glass, N. L., & Donaldson, G. C. (1995). Applied and Environmental Microbiology, 61, 1323–1330.

    CAS  Google Scholar 

  12. Saitou, N., & Nei, M. (1987). Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  13. Kimura, M. (1980). Journal of Molecular Evolution, 16, 111–120.

    Article  CAS  Google Scholar 

  14. Silveira, S. T., Daroit, D. J., & Brandelli, A. (2008). LWT Food Science Techonology, 41, 170–174.

    Article  CAS  Google Scholar 

  15. Dedavid e Silva, L. A., Lopes, F. C., Silveira, S. T., & Brandelli, A. (2009). Applied Biochemistry Biotechnology, 152, 295–305.

    Article  CAS  Google Scholar 

  16. Mapari, S. A. S., Meyer, A. S., & Thrane, U. (2006). Journal of Agricultural and Food Chemistry, 54, 7027–7035.

    Article  CAS  Google Scholar 

  17. Senyuva, H. Z., Gilbert, J., & Öztürkoglu, S. (2008). Analytica Chimica Acta, 617, 97–106.

    Article  CAS  Google Scholar 

  18. Velmurugan, P., Kamala-Kannan, S., Balachandar, V., Lakshmanaperumalsamy, P., Chae, J. C., & Oh, B. T. (2009). Carbohydrate Polymers, 79, 262–268.

    Article  Google Scholar 

  19. Fungaro, M. H. P. (2000). Biotecnologica Ciencias Desenvol, 3, 12–16.

    Google Scholar 

  20. Einax, E., & Voigt, K. (2003). Organisms, Diversity and Evolution, 3, 185–194.

    Article  Google Scholar 

  21. Bastola, D. R., Out, H. H., Doukas, S. E., Sayood, K., Hinrichs, S. H., & Iwen, P. C. (2004). Mycological Research, 108, 117–125.

    Article  CAS  Google Scholar 

  22. Inuma, T., Khodaparast, S. A., & Takamatsu, S. (2007). Molecular Phylogenetics and Evolution, 44, 741–751.

    Article  CAS  Google Scholar 

  23. Mapari, S. A. S., Hansen, M. E., Meyer, A. S., & Thrane, U. (2008). Journal of Agricultural and Food Chemistry, 56, 9981–9989.

    Article  CAS  Google Scholar 

  24. Wolf, F. T., Kim, Y. T., & Jones, E. A. (1960). Physiological Plant, 13, 621–627.

    Article  CAS  Google Scholar 

  25. Mapari, S. A. S., Meyer, A. S., Thrane, U., & Frisvad, J. (2009). Microbial Cell Factories, 8, 1–15.

    Article  Google Scholar 

  26. Asilonu, E., Bucke, C., & Keshavarz, T. (2000). Biotechnology Letters, 22, 931–936.

    Article  CAS  Google Scholar 

  27. Nielsen, K. F., & Smedsgaard, J. (2003). Journal of Chromatography. A, 1002, 111–136.

    Article  CAS  Google Scholar 

  28. Vishwanath, V., Sulyok, M., Labuda, R., Bicker, W., & Krska, R. (2009). Analytical and Bioanalytical Chemistry, 395, 1355–1372.

    Article  CAS  Google Scholar 

  29. Sulyok, M., Krska, R., & Schuhmacher, R. (2010). Food Chemistry, 119, 408–416.

    Article  CAS  Google Scholar 

  30. Rasmussen, R. R., Rasmussen, P. H., Larsen, T. O., Bladt, T. T., & Binderup, M. L. (2011). Food and Chemical Toxicololgy, 49, 31–44.

    Article  CAS  Google Scholar 

  31. Tor, E. R., Puschner, B., Filigenzi, M. S., Tiwary, A. K., & Poppenga, R. H. (2006). Analytical Chemistry, 78, 4624–4629.

    Article  CAS  Google Scholar 

  32. Paterson, R. R. M., Venâncio, A., & Lima, N. (2006). Revista Iberoamericana de Micologia, 23, 155–159.

    Article  Google Scholar 

  33. Prabha, D., D’Souza, L., Kamat, T., Rodrigues, C., & Naik, C. G. (2009). Indian Journal of Marine Science, 38, 38–44.

    Google Scholar 

  34. Lopes, F. C., Tichota, D. M., Sauter, I. P., Meira, S. M. M., Segalin, J., Rott, M. B., et al. (2013). Annals of Microbiology, 63, 771–778.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support. We also thank Dr. Patricia Valente da Silva, Dr. Charley Christian Staats, Dr. Fernanda Stanisçuaski (UFRGS), and Dr. João Lúcio de Azevedo (ESALQ/USP) for the insightful suggestions on the manuscript and Dr. Nelson Netto (UNICRUZ) for providing some fungi for our mycology collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Brandelli.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 997 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, F.C., Tichota, D.M., Pereira, J.Q. et al. Pigment Production by Filamentous Fungi on Agro-Industrial Byproducts: an Eco-Friendly Alternative. Appl Biochem Biotechnol 171, 616–625 (2013). https://doi.org/10.1007/s12010-013-0392-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0392-y

Keywords

Navigation