Skip to main content
Log in

Regeneration and Agrobacterium-mediated transformation of the apomictic species Eulaliopsis binata

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Protocols for regeneration and Agrobacterium-mediated transformation of the apomictic species Eulaliopsis binata were developed. Initially, seeds of four genotypes of E. binata were incubated on a callus induction Murashige and Skoog (MS) basal medium supplemented with three concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D). It was found that 36.2 % of explants developed highly friable callus on medium containing 3.0 mg l−1 2,4-D. Based on frequency of callus induction, the genotype Neixiang was selected for regeneration and transformation. Callus incubated on MS basal medium supplemented with 0.2 mg l−1 α-naphthalene acetic acid and 6.0 mg l−1 6-furfuryl-aminopurine developed shoots. Subsequently, Agrobacterium tumefaciens strain EHA105—harboring a plasmid pCAMBIA1381 carrying a hygromycin phosphotransferase (hpt) resistance gene and a synthetic green fluorescent protein (GFP) gene, both driven by the cauliflower mosaic virus 35S promoter—was used for transformation system. Putative transgenic callus was obtained following two cycles of hygromycin selection. Expression of the transgene(s) in putative transgenic callus was analyzed using the GFP detection. Molecular identification of putative transformed shoots was performed by polymerase chain reaction and Southern blot analysis to confirm presence and integration of the hpt gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AS:

Acetosyringone

BA:

6-Benzyladenine

2,4-D 2:

4-Dichlorophenoxyacetic acid

GFP:

Green fluorescent protein

hpt :

Hygromycin phosphotransferase

KT:

6-Furfuryl-aminopurine

MS:

Murashige and Skoog medium

NAA:

α-Naphthalene acetic acid

PGR:

Plant growth regulator

References

  1. Huang, Y., Zou, D. S., Wang, H., Yu, Y. L., & Luo, J. X. (2003). Journal of Agro-Environment Science, 22, 217–220.

    Google Scholar 

  2. Zhang, J. X. (2002). South West Pulp and Paper, 3, 44–47.

    Google Scholar 

  3. Li, J. J., Liu, L., Ouyang, Y. D., & Yao, J. L. (2011). Genetics and Molecular Research, 10, 2326–2339.

    Article  CAS  Google Scholar 

  4. Yao, J. L., Zhou, Y., & Hu, C. G. (2007). Sexual Plant Reproduction, 20, 151–158.

    Article  Google Scholar 

  5. Zhang, D. L., Hu, C. G., Ouyang, Y. D., & Yao, J. L. (2012). Plant Molecular Biology Reporter, 30, 46–54.

    Article  CAS  Google Scholar 

  6. Bicknell RA, Koltunow AM (2004) Plant Cell 16 Suppl: S228-245

  7. Singh, M., Burson, B. L., & Finlayson, S. A. (2007). Plant Molecular Biology, 64, 673–682.

    Article  CAS  Google Scholar 

  8. Dalton, S. J., Bettany, A. J. E., Bhat, V., Gupta, M. G., Bailey, K., Timms, E., et al. (2003). Plant Cell Reports, 21, 974–980.

    Article  CAS  Google Scholar 

  9. Olmedo-Monfil, V., Duran-Figueroa, N., Arteaga-Vazquez, M., Demesa-Arevalo, E., Autran, D., Grimanelli, D., et al. (2010). Nature, 464, 628–632.

    Article  CAS  Google Scholar 

  10. Singh, M., Goel, S., Meeley, R. B., Dantec, C., Parrinello, H., Michaud, C., et al. (2011). The Plant Cell, 23, 443–458.

    Article  CAS  Google Scholar 

  11. Rodrigues, J. C. M., Tucker, M. R., Johnson, S. D., Hrmova, M., & Koltunow, A. M. G. (2008). The Plant Cell, 20, 2372–2386.

    Article  CAS  Google Scholar 

  12. Silveira, É. D., Guimarães, L. A., Alencar Dusi, D. M., Silva, F. R., Martins, N. F., Carmo Costa, M. M., et al. (2011). Plant Cell Reports, 31, 403–416.

    Article  Google Scholar 

  13. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  14. Dutta, I., Kottackal, M., Tumimbang, E., Tajima, H., Zaid, A., & Blumwald, E. (2013). Plant Cell, Tissue and Organ Culture (PCTOC), 112, 289–301.

    Article  CAS  Google Scholar 

  15. Al Abdallat, A. M., Sawwan, J. S., & Al Zoubi, B. (2010). Plant Cell, Tissue and Organ Culture (PCTOC), 104, 31–39.

    Article  Google Scholar 

  16. Aldrich, J., & Cullis, C. A. (1993). Plant Molecular Biology Reporter, 11, 128–141.

    Article  CAS  Google Scholar 

  17. Hood, E. E., Gelvin, S. B., Melchers, L. S., & Hoekema, A. (1993). Transgenic Research, 2, 208–218.

    Article  CAS  Google Scholar 

  18. Odell, J. T., Nagy, F., & Chua, N. H. (1985). Nature, 313, 810–812.

    Article  CAS  Google Scholar 

  19. Fan, J., Liu, X., Xu, S.-X., Xu, Q., & Guo, W.-W. (2011). Plant Cell, Tissue and Organ Culture (PCTOC), 107, 225–232.

    Article  CAS  Google Scholar 

  20. Zupan, J. R., & Zambryski, P. (1995). Plant Physiology, 107, 1041–1047.

    Article  CAS  Google Scholar 

  21. Karthikeyan, A., Shilpha, J., Karutha Pandian, S., & Ramesh, M. (2011). Plant Cell, Tissue and Organ Culture (PCTOC), 109, 153–165.

    Article  Google Scholar 

  22. Gomes, F., Simoes, M., Lopes, M. L., & Canhoto, J. M. (2010). New Biotechnology, 27, 882–892.

    Article  CAS  Google Scholar 

  23. Sujatha, M., Vijay, S., Vasavi, S., Sivaraj, N., & Rao, S. C. (2012). Plant Cell, Tissue and Organ Culture (PCTOC), 111, 359–372.

    Article  CAS  Google Scholar 

  24. Lin, Y. J., & Zhang, Q. F. (2004). Plant Cell Reports, 23, 540–547.

    Article  Google Scholar 

  25. Pan, Z. Y., Zhu, S. P., Guan, R., & Deng, X. X. (2010). Plant Cell, Tissue and Organ Culture, 103, 145–153.

    Article  CAS  Google Scholar 

  26. Pourhosseini, L., Kermani, M. J., Habashi, A. A., & Khalighi, A. (2013). Plant Cell, Tissue and Organ Culture (PCTOC), 112, 101–108.

    Article  CAS  Google Scholar 

  27. Zhao, W. N., Zheng, S. S., & Ling, H. Q. (2011). Plant Cell, Tissue and Organ Culture, 106, 475–483.

    Article  CAS  Google Scholar 

  28. Anike, F. N., Konan, K., Olivier, K., & Dodo, H. (2012). Plant Cell, Tissue and Organ Culture (PCTOC), 111, 303–313.

    Article  Google Scholar 

  29. Hoque, M. E., & Mansfield, J. W. (2004). Plant Cell, Tissue and Organ Culture (PCTOC), 78, 217–223.

    Article  CAS  Google Scholar 

  30. Ombori, O., Muoma, J. V. O., & Machuka, J. (2013). Plant Cell, Tissue and Organ Culture (PCTOC), 113, 11–23.

    Article  CAS  Google Scholar 

  31. Shrawat, A. K., & Lorz, H. (2006). Plant Biotechnology Journal, 4, 575–603.

    Article  CAS  Google Scholar 

  32. Li, D. X., Zhang, J., Zhao, J., Zhang, Y., Li, L., Liu, S. J., Chen, F., & Yang, Z. R. (2006). Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao Journal of Plant Physiology and Molecular Biology, 32, 45–51.

    Google Scholar 

  33. Rakosy-Tican, E., Aurori, C. M., Dijkstra, C., Thieme, R., Aurori, A., & Davey, M. R. (2007). Plant Cell Reports, 26, 661–671.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Carl Hesler for his assistance in writing style. This study was supported by the National Natural Science Foundation of China (30670127) and Huazhong Agricultural University Scientific & Technological Self-innovation Foundation (2010SC13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Ling Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, K., Hu, C.G., Xu, B. et al. Regeneration and Agrobacterium-mediated transformation of the apomictic species Eulaliopsis binata . Appl Biochem Biotechnol 171, 543–552 (2013). https://doi.org/10.1007/s12010-013-0391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0391-z

Keywords

Navigation