Skip to main content
Log in

Biochemical, Immunological and Kinetic Characterisation of Thiol Protease Inhibitor (Cystatin) from Liver

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Regulation of the cysteine protease activity is imperative for proper functioning of the various organ systems. Elevated activities of cysteine proteinases due to impaired regulation by the endogenous cysteine proteinase inhibitors (cystatins) have been linked to liver malignancies. To gain an insight into these regulatory processes, it is essential to purify and characterise the inhibitors, cystatins. Present study was undertaken to purify the inhibitor from the liver. The purification was accomplished in four steps: alkaline treatment, ammonium sulphate fractionation, acetone precipitation and gel filtration column (Sephacryl S-100 HR). The eluted protein exhibited inhibitory activity towards papain, and its purity was further reaffirmed using western blotting and immunodiffusion. The purified inhibitor (liver cystatin (LC)) was stable in the pH range of 6–8 and temperature up to 45 °C. In view of the significance of kinetics parameters for drug delivery, the kinetic parameters of liver cystatin were also determined. LC showed the greatest affinity for papain followed by ficin and bromelain. UV and fluorescence spectroscopy results showed that binding of LC with thiol proteases induced changes in the environment of aromatic residues. Recent advances in the field of proteinase inhibitors have drawn attention to the possible use of this collected knowledge to control pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ekiel, I., Abrahamson, M., Fulton, D. B., Lindhal, P., et al. (1997). Journal Molecular Biology, 271, 266–271.

    Article  CAS  Google Scholar 

  2. Turk, V., Stoka, V., & Turk, D. (2008). Frontiers in Bioscience, 1(13), 5406–5420.

    Article  Google Scholar 

  3. Kordis, D., & Turk, V. (2009). BMC Evol Biol, 18(9), 266.

    Article  Google Scholar 

  4. Barrett, A. J., Rawlings, N., Davies, M., Machleidt, W., Salvesen, G., & Turk, V. (1986). In A. Barrett & G. Salvesen (Eds.), Proteinase inhibitors (pp. 515–569). Amsterdam: Elsevier.

    Google Scholar 

  5. Priyadarshini, M., & Bano, B. (2011). Cystatins: the multifaceted protease inhibitors. In J. B. Cohen & L. P. Rayseck (Eds.), Cystatins: protease inhibitors, biomarkers and immunomodulators (pp. 1–39). New York: Nova.

    Google Scholar 

  6. Vary, B., Hartmann, S., & Hoebeke, J. (2002). Cellular and Molecular Life Sciences, 59, 1503–1512.

    Article  Google Scholar 

  7. Muller-Esterl, W. (1989). Thrombosis Hemostasis, 6, 2–6.

    Google Scholar 

  8. Kabanda, A., Goffin, E., & Bernard, A. (1946). Kidney International, 48, 52.

    Google Scholar 

  9. Delaisse, J. M., Ledent, P., & Vaes, G. (1991). Biochemistry Journal, 279, 167–174.

    CAS  Google Scholar 

  10. Trabandt, A., Gay, R. E., Fassbender, H. G., & Gay, R. S. (1991). Arthritis and Rheumatism, 34, 1444–1451.

    Article  CAS  Google Scholar 

  11. Assfalg–Machleidt, I., Jochun, M., Klaubert, W., & Machleidt, W. (1998). Biological Chemistry Hoppe Seyler, 369, 263–269.

    Google Scholar 

  12. Koppel, P., Baici, A., Keist, R., Matzku, S., & Keller, R. (1994). Experimental Cell Biology, 52, 293–299.

    Google Scholar 

  13. Buttle, D. J., Barnett, D., & Abrahamson, M. (1990). Scandinavian Journal of Clinical and Laboratory Investigation, 50, 509–516.

    Article  CAS  Google Scholar 

  14. Cox, S. W., & Eley, B. M. (1998). Peridont Research, 24, 353–361.

    Article  Google Scholar 

  15. Beige, L., Ouali, A., & Valin, C. (1982). Biochemistry and Biophysics Acta, 2, 210–217.

    Google Scholar 

  16. Jarvinen, M., & Rinnie, A. (1982). Biochemistry and Biophysics Acta, 708, 210–217.

    Article  CAS  Google Scholar 

  17. Machleidt, W., Borchart, U., Fritz, H., Brizn, J., Ritonja, A., & Turk, V. (1983). Hoppe–Syler’s Z Physiological Chemistry, 364, 1481–1486.

    Article  CAS  Google Scholar 

  18. Grubb, A., & Lofberg, H. (1982). Proceedings of the National Academy of Sciences of the United States of America, 30, 24–27.

    Google Scholar 

  19. Cohen, D. H., Feiner, H., Jensson, O., & Frangione, B. (1983). The Journal of Experimental Medicine, 158, 623–628.

    Article  CAS  Google Scholar 

  20. Isemura, S., Saitoh, E., & Sanada, K. (1984). Journal Biochemistry, 96, 1311–1314.

    CAS  Google Scholar 

  21. Rohrlich, S. T., Levy, H., & Rifkin, D. B. (1985). Biological Chemistry Hoppe-Seyler, 366, 147–155.

    Article  CAS  Google Scholar 

  22. Shahid, P. B., Zehra, S., & Bano, B. (2005). The Protein Journal, 24, 95–102.

    Article  Google Scholar 

  23. Sumbul, S., & Bano, B. (2006). Neurochemical Research, 31, 1327–1336.

    Article  CAS  Google Scholar 

  24. Rashid, F., Sharma, S., & Bano, B. (2006). Placenta, 2, 822–831.

    Article  Google Scholar 

  25. Khan, M. S., & Bano, B. (2009). International Journal of Peptide Research and Therapeutics, 9, 81–86.

    Article  Google Scholar 

  26. Shah, A., & Bano, B. (2009). International Journal of Peptide Research and Therapeutics, 15, 43–48.

    Article  CAS  Google Scholar 

  27. Priyadarshini, M., & Bano, B. (2010). Amino Acids, 38(4), 1001–1010.

    Article  CAS  Google Scholar 

  28. Wiseman, R. L., Powers, E. T., & Kelly, J. W. (2005). Biochemistry, 44(50), 16612–16623.

    Article  CAS  Google Scholar 

  29. Ouchterlony, O. (1962). Acta Pathologica et Microbiologica Scandinavica, 26, 579–599.

    Google Scholar 

  30. Dubois, M., Gilles, M. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–354.

    Article  CAS  Google Scholar 

  31. Ellman, R. (1969). Biochemistry Methods, 19, 446–451.

    Google Scholar 

  32. Kunitz, M. (1947). Journal of Physiology, 30, 291–310.

    CAS  Google Scholar 

  33. Krupka, R. M., & Laidler, K. J. (1959). Canadian Journal of Chemistry, 51, 1268–1271.

    Article  Google Scholar 

  34. Henderson, P. J. F. (1972). Biochemistry Journal, 127, 321–323.

    CAS  Google Scholar 

  35. Shah, A., & Bano, B. (2010). European Biophysics Journal, 40, 175–180.

    Article  Google Scholar 

  36. Barret, A. J., Davies, M. E., & Grubb, A. (1984). Biochemical and Biophysical Research Communications, 120, 631–636.

    Article  Google Scholar 

  37. Salvesen, G., Parkes, C., Abrahamson, M., Grubb, A., & Barret, A. J. (1986). Biochemistry Journal, 234, 429–434.

    CAS  Google Scholar 

  38. Machleidt, W., Machleidt, I., & Muller-Esterl, I. (1988). Journal of Biological Chemistry, 263, 12661–12668.

    Google Scholar 

  39. Balbin, M., Hall, A., Grubb, A., Mason, R. W., Lopez-otin, C., & Abrahamson, M. (1994). Journal of Biological Chemistry, 37, 23156–23162.

    Google Scholar 

  40. Nicklin, M. J. H., & Barret, A. J. (1984). Biochemistry Journal, 223, 245–253.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilqees Bano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, A., Priyadarshini, M., Khan, M.S. et al. Biochemical, Immunological and Kinetic Characterisation of Thiol Protease Inhibitor (Cystatin) from Liver. Appl Biochem Biotechnol 171, 667–675 (2013). https://doi.org/10.1007/s12010-013-0383-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0383-z

Keywords

Navigation