Skip to main content
Log in

Screening of Tea (Camellia sinensis) for Trait-Associated Molecular Markers

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study was done to identify random amplified polymorphic DNA (RAPD) markers that may associate with seven important traits in tea. Sixty RAPD primers were first screened using 18 cultivars under each of the 7 traits, followed by confirmatory screening of 20 promising primers with 32 tea cultivars. Six RAPD primers generated a total of nine specific bands that associated with six desired traits: black tea quality and tolerance to drought, high temperature, low temperature, Phomopsis theae, and high yield. These markers would allow early identification of plant material with the desired traits that can be advanced to the next stage of selection and enhance targeted choice of breeding stocks with the desirable traits. The nine RAPD markers identified in this study could improve precision and efficiency in tea breeding and selection and are an important contribution towards the establishment of marker-assisted selection in tea breeding programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kaundun, S. S., & Park, Y. G. (2002). Crop Science, 42(2), 594–601.

    Article  CAS  Google Scholar 

  2. Ni, S., Yao, M., Chen, L., Zhao, L., & Wang, X. (2008). Frontiers of Agriculture in China, 2(2), 200–207.

    Article  Google Scholar 

  3. Damayanthi, M., Mohotti, A., & Nissanka, S. (2011). Tropical Agriculture Research, 22(1), 66–75.

    Google Scholar 

  4. Herd, E. M. (1976). Quarterly Newsletter, Tea Research Foundation of Central Africa, Mulanje Malawi 43, 11.

  5. Tanton, T. W. (1982). Experimental Agriculture, 18, 53–63.

    Article  Google Scholar 

  6. Palmer, R. (1985). The Journal of African History, 26(2–3), 215–239.

    Article  Google Scholar 

  7. Ellis, R., & Nyirenda, H. E. (1995). Experimental Agriculture, 31(3), 307–323.

    Article  Google Scholar 

  8. Kamunya, S. M., & Wachira, F. N. (Unpublished results). Tea Research Foundation of Kenya, Technical Open Day 2005, 1–15.

  9. Hernandez, P., De La Rosa, R., Rallo, L., Dorado, G., & Martin, A. (2001). Theoretical and Applied Genetics, 103(5), 788–791.

    Article  CAS  Google Scholar 

  10. TRFCA. (2009). Annual Report, Tea Research Foundation of Central. Mulanje Malawi: Africa.

    Google Scholar 

  11. Sorkheh, K., Shiran, B., Kiani, S., Amirbakhtiar, N., Mousavi, S., Rouhi, V., Mohammady, D. S., Gradziel, T. M., Malysheva-Otto, L. V., & Martínez-Gómez, P. (2009). Journal of Forest Research, 20(3), 183–194.

    Article  CAS  Google Scholar 

  12. Henry, R. J. (1997). In R. J. Henry (Ed.), Practical applications of plant molecular biology: molecular markers in plant improvement (pp. 101–134). New York: Chapman and Hall.

    Chapter  Google Scholar 

  13. Tanaka, J. (1996). Tea Research Journal, 84(Suppl), 44–45.

    Google Scholar 

  14. Gunasekare, M. (2009). The Journal of Horticultural Science Biotechnology, 82(2), 161–169.

    Google Scholar 

  15. Wachira, F. N., Powell, W., & Waugh, R. (1997). Heredity, 78(6), 603–611.

    Article  CAS  Google Scholar 

  16. Wachira, F. N., Tanaka, J., & Takeda, Y. (2001). The Journal of Horticultural Science and Biotechnology, 76, 557–563.

    CAS  Google Scholar 

  17. Freeman, S., West, J., James, C., Lea, V., & Mayes, S. (2004). Molecular Ecology Notes, 4(3), 324–326.

    Article  CAS  Google Scholar 

  18. Mishra, R. S., & Sen-Mandi, S. (2004). Current Science, 87, 60–66.

    CAS  Google Scholar 

  19. Wium, M. (2009). MSc thesis, University of Pretoria, Pretoria, South Africa.

  20. Malebe, M. P. (2011). MSc thesis, University of Pretoria, Pretoria, South Africa.

  21. Kamunya, S., Wachira, F., Pathak, R., Korir, R., Sharma, V., Kumar, R., Bhardwaj, P., Chalo, R., Ahuja, P., & Sharma, R. (2010). Tree Genetics Genomes, 6(6), 915–929.

    Article  Google Scholar 

  22. Sharma, H., Kumar, R., Sharma, V., Kumar, V., Bhardwaj, P., Ahuja, P. S., & Sharma, R. K. (2011). American Journal of Botany, 98(6), e133–138.

    Article  CAS  Google Scholar 

  23. Shi, C.-Y., Yang, H., Wei, C.-L., Yu, O., Zhang, Z.-Z., Jiang, C.-J., Sun, J., Li, Y.-Y., Chen, Q., Xia, T., & Wan, X.-C. (2011). BMC Genomics. DOI:. doi:10.1186/1471-2164-12-131

    Google Scholar 

  24. Tanaka, J., & Taniguchi, F. (2006). Journal of the Remote Sensing Society of Japan, 101, 1–7.

    Google Scholar 

  25. Kamel, M. A., Soliman, S. S., Mandour, A. E., & Ahmed, M. S. S. (2010). Journal of American Science, 6(12), 364–374.

    Google Scholar 

  26. Chen, L., & Yamaguchi, S. (2005). Plant Breeding, 124(4), 404–409.

    Article  CAS  Google Scholar 

  27. Belaj, A., Satovic, Z., Cipriani, G., Baldoni, L., Testolin, R., Rallo, L., & Trujillo, I. (2003). Theoretical and Applied Genetics, 107(4), 736–744.

    Article  CAS  Google Scholar 

  28. Ruan, C. (2010). African Journal of Biotechnology, 9(5), 573–580.

    Google Scholar 

  29. Brandyopadhyay, T. (2011). Journal of Plant Breeding and Genetics, 5(1), 23–33.

    Article  Google Scholar 

  30. Hackett, C. A., Wachira, F. N., Paul, S., Powell, W., & Waugh, R. (2000). Heredity, 85(4), 346–355.

    Article  CAS  Google Scholar 

  31. Langridge, P., & Chalmers, K. (2004). In H. Lorz & G. Wenzel (Eds.), Biotechnology in agriculture and forestry: molecular marker systems. Vol 55: The principle: identification and application of molecular markers (pp. 1–22). New York: Springer.

    Google Scholar 

  32. Mohler, V., & Singrun, C. (2004). In H. Lorz & G. Wenzel (Eds.), Biotechnology in agriculture and forestry: molecular marker systems. Vol 55: general considerations: marker assisted selection (pp. 305–317). Springer: Verlag.

    Google Scholar 

  33. Kaundun, S. S., Zhyvoloup, A., & Park, Y. G. (2000). Euphytica, 115(1), 7–16.

    Article  CAS  Google Scholar 

  34. Shalin, K. V., Manjunatha, S., Lebrun, P., Berger, A., Baudouin, L., Pirany, N., Ranganath, R. M., & Theertha-Prasad, D. (2007). Genome, 50, 35–42.

    Article  Google Scholar 

  35. Qiagen (2006). Mini Plant Handbook, www.Qiagen.com

Download references

Acknowledgements

The authors gratefully acknowledge financial support for this work and study grant to the first author from Carnegie Corporation of New York through the Regional Initiative in Science and Education (RISE) and the Southern African Biochemistry and Informatics for Natural Products (SABINA) Network. TRFCA granted study leave to the first author and, provided the tea cultivars used in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Vorster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mphangwe, N.I.K., Vorster, J., Steyn, J.M. et al. Screening of Tea (Camellia sinensis) for Trait-Associated Molecular Markers. Appl Biochem Biotechnol 171, 437–449 (2013). https://doi.org/10.1007/s12010-013-0370-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0370-4

Keywords

Navigation