Skip to main content
Log in

The Thermostability of Two Kinds of Recombinant ∆6-Fatty Acid Desaturase with Different N-Terminal Sequence Lengths in Low Temperature

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Two recombinant Rhizopus stolonifer ∆6-fatty acid desaturase enzymes with different-length N-termini were cloned and expressed in Saccharomyces cerevisiae strain INVScl: LRsD6D begins with the sequence of the N-terminal of the R. stolonifer ∆6-fatty acid desaturase native, encoding a deduced polypeptide of 459 amino acids (M-S-T-L-D-R-Q-S-I-F-T-I-K-E-L-E-S-I-S-Q-R-I-H-D-G-D-E-E-A-M-K-F), whereas SRsD6D begins with the amino acid sequence of the predicted ORF, encoding a deduced polypeptide of 430 amino acids (M-K-F) and LRsD6D is longer than SRsD6D by 29 amino acids (M-S-T-L-D-R-Q-S-I-F-T-I-K-E-L-E-S-I-S-Q-R-I-H-D-G-D-E-E-A). Bioinformatic analysis characterized the two recombinant ∆6-fatty acid desaturase enzymes with different-length N-termini, including three conserved histidine-rich motifs, hydropathy profile, and a cytochrome b5-like domain in the N-terminus. When the coding sequence was expressed in S. cerevisiae strain INVScl, the coding produced ∆6-fatty acid desaturase activity exhibited by RsD6D, leading to a novel peak corresponding to γ-linolenic acid methyl ester standards, which was detected with the same retention time. The residual activity of LRsD6D was 74 % at 15 °C for 4 h and that of SRsD6D was 43 %. Purified recombinant LRsD6D was more stable than SRsD6D, indicating that the N-terminal extension, containing mostly hydrophobic residues, affected the overall stability of recombinant LRsD6D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Los, D. A., & Murata, N. (1998). Structure and expression of fatty acid desaturase. Biochimica et Biophysica Acta, 1394, 3–15.

    Article  CAS  Google Scholar 

  2. Vigh, L., Maresca, B., & Harwood, J. L. (1998). Does the membrane’s physical state control the expression of heat shock and other genes? Trends in Biochemical Sciences, 23, 369–374.

    Article  CAS  Google Scholar 

  3. Saidi, Y., Finka, A., Muriset, M., Bromberg, Z., Weiss, Y. G., Maathuis, F. J. M., & Goloubinoff, P. (2009). The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. The Plant Cell, 21, 1–15.

    Article  Google Scholar 

  4. Huang, Y. S., Chaudhary, S., Thurmond, J. M., Bobik, J. R. E. G., Yuan, L., Chan, G. M., Kirchner, S. J., Mukerji, P., & Knutzon, D. S. (1999). Cloning of ∆12-and ∆6-desaturase from Mortierella alpina and recombinant production of γ-linolenic acid in S. cerevisiae. Lipids, 34, 649–659.

    Article  CAS  Google Scholar 

  5. Murphy, D. J. (1996). Engineering oil production in rapeseed and other oil crops. Trends in Biotechnology, 14, 206–213.

    Article  CAS  Google Scholar 

  6. Napier, J. A., Michaelson, L. V., & Stobart, A. K. (1999). Plant desaturase: harvesting the fat of the land. Current Opinion in Plant Biology, 2, 123–127.

    Article  CAS  Google Scholar 

  7. Sayanova, O., Smith, M. A., Lapinskes, P., Stobart, A. K., Dobson, G., Christie, W. W., Shewry, P. R., & Napier, J. A. (1997). Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of ∆6-desaturated fatty acid in transgenic tobacco. Proceedings of the National Academy of Sciences of the United States of America, 94, 4211–4216.

    Article  CAS  Google Scholar 

  8. Sayanova, O., Beaudoin, F., Libisch, B., Castel, A., Shewry, P. R., & Napier, J. A. (2001). Mutagenesis and heterologous expression in yeast of a plant delta6-fatty acid desaturase. Journal of Experimental Botany, 52, 1581–1585.

    Article  CAS  Google Scholar 

  9. Shankin, J., Whittle, E., & Fox, B. G. (1994). Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase are conserved in alkane hydrocylase and xylene monooxygenase. Biochemistry, 33, 12787–12794.

    Article  Google Scholar 

  10. Gill, I., & Valivety, R. (1997). Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends in Biotechnology, 15, 401–409.

    Article  CAS  Google Scholar 

  11. Zhang, Q., Li, M. C., Sun, Y., Ma, H. T., & Xing, L. J. (2004). Influence of sequence modification flanking AUG codon on ∆6-fatty acid desaturase gene expression. Acta Microbiologica Sinica, 44, 536–539.

    CAS  Google Scholar 

  12. Lu, H., Li, J. N., Chai, Y. R., & Zhang, X. K. (2009). Identification and characterization of a novel delta 6-fatty acid desaturase gene from Rhizopus stolonifer. Molecular Biology Reports, 36, 2291–2297.

    Article  CAS  Google Scholar 

  13. Elble, R. (1992). A simple and efficient procedure for transformation of yeasts. Biotechniques, 13, 18–20.

    CAS  Google Scholar 

  14. Xian, M., Kang, Y. J., Yan, J. C., Liu, Y., Li, W. X., Bi, Y. L., & Zhen, K. J. (2002). ∆6 Desaturase catalyzing linoleic acid to γ-linolenic acid. Chemical Journal of Chinese Universities, 23(4), 624–627.

    Google Scholar 

  15. Petrovskaya, L., Ozerskaya, S., Ivanushkina, N., Kochkina, G., Laurinavichuis, K., Pecheritsina, S., Fattakhova, R., & Tiedje, J. M. (2005). Biodiversity of cryopegs in permafrost. FEMS Microbiology Ecology, 53, 117–128.

    Article  Google Scholar 

  16. Cary, S. C., McDonald, I. R., Barrett, J. E., & Cowan, D. A. (2010). On the rocks: the microbiology of Antarctic Dry Valley soils. Nature Reviews Microbiology, 8, 129–138.

    Article  CAS  Google Scholar 

  17. Deming, J. W. (2002). Psychrophiles and polar regions. Current Opinion in Microbiology, 5, 301–309.

    Article  CAS  Google Scholar 

  18. Margesin, R., Feller, G., Gerday, C., & Russell, N. J. (2002). Cold-adapted microorganisms: adaptation strategies and biotechnological potential. In G. Bitton (Ed.), The encyclopedia of environmental microbiology (pp. 871–885). New York: Wiley.

    Google Scholar 

  19. Macartney, A., Maresca, B., & Cossins, A. R. (1994). Acyl-CoA desaturases and the adaptive regulation of membrane lipid composition. In A. R. Cossins (Ed.), Temperature adaptation of biological membranes (pp. 63–76). London: Portland.

    Google Scholar 

  20. Chaudhuri, T. K., Horii, K., Yoda, T., Arai, M., Nagata, S., Terada, T. P., Uchiyama, H., Ikura, T., Tsumoto, K., Kataoka, H., Matsushima, M., Kuwajima, K., & Kumagai, I. (1999). Effect of the extra N-terminal methionine residue on the stability and folding of recombinant alpha-lactalbumin expressed in Escherichia coli. Journal of Molecular Biology, 285, 1179–1194.

    Article  CAS  Google Scholar 

  21. Yip, K. S., Stillman, T. J., Britton, K. L., Artymiuk, P. J., Baker, P. J., Sedelnikova, S. E., Engel, P. C., Pasquo, A., Chiaraluce, R., & Consalvi, V. (1995). The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperature. Structure, 3, 1147–1158.

    Article  CAS  Google Scholar 

  22. Saelensminde, G., Halskau, J., Helland, R., Willassen, N. P., & Jonassen, I. (2007). Structure-dependent relationships between growth temperature of prokaryotes and the amino acid frequency in their proteins. Extremophiles, 11, 585–596.

    Article  CAS  Google Scholar 

  23. Feller, G., Arpigny, J. L., Narinx, E., & Gerday, C. (1997). Molecular adaptation of enzymes from psychrophilic organisms. Comparative Biochemistry and Physiology, 118A(495), 499.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Key Project of Chinese Ministry of Education, China National “948” Program, China National “863” Program, etc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H., Zhu, Y. The Thermostability of Two Kinds of Recombinant ∆6-Fatty Acid Desaturase with Different N-Terminal Sequence Lengths in Low Temperature. Appl Biochem Biotechnol 171, 165–172 (2013). https://doi.org/10.1007/s12010-013-0363-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0363-3

Keywords

Navigation