Skip to main content

Advertisement

Log in

Buffalo Colostrum β-lactoglobulin Inhibits VEGF-Induced Angiogenesis by Interacting with G protein-Coupled Receptor Kinase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

β-lactoglobulin (β-lg), a major whey protein was purified and characterised from buffalo colostrum. The in silico analysis of the tryptic peptides based on LC-CID-MS/MS facilitated the identification of protein as β-lg. The sequences IIVTQ f[1–5] and LSFNPTQLEEQCHV f(149–162) of m/z 933+ and 8512+ were found to match N- and C-extreme of β-lg while IDALNENK f(84–91) and TPEVDDEALEKFDK f(125–138) sequences deduced for m/z 916+ and 8182+ were in compliance to buffalo milk β-lg. Considering the sequence similarity of β-lg to glycodelin, a proven angiogenic protein, similar role for β-lg from buffalo colostrum (BLG-col) was examined. Interestingly, BLG-col exhibited anti-angiogenic activity by potently inhibiting cell proliferation, micro-vessel sprouting, cell migration and tube formation of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner but having varied effect on Ehrlich ascites tumor cells, MCF-7, MDA-MB 435 and MDA-MB 231 cell lines. The anti-angiogenic potential of BLG-col was found to be vascular endothelial growth factor mediated. The immunolocalisation of BLG-col on the cell surface of HUVECs evidenced using FITC-labelled β-lg antibody indicated its extra-cellular binding. Furthermore, BLG-col interacting HUVEC membrane protein (64 kDa) was detected by immunoblot and its identity was established by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry analysis, which showed peptide sequence homology to G protein-coupled receptor kinase 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Young, W., & Park, A (2013). Bioactive components in milk and dairy products. New York: Wiley, p 20.

  2. Hernandez-Ledesma, B., Recio, I., & Amigo, L. (2008). β-lactoglobulin as source of bioactive peptides: review article. Amino Acids, 35, 257–265.

    Article  CAS  Google Scholar 

  3. Flower, D. R., North, A. C. T., & Sansom, C. E. (2000). The lipocalin protein family-structural and sequence overview. Biochimica et Biophysica Acta, 1482, 9–24.

    Article  CAS  Google Scholar 

  4. Yang, M. C., Chen, N. C., Chen, C. J., Wu, C. Y., & Mao, S. J. (2009). Evidence for beta-lactoglobulin involvement in vitamin D transport in vivo—role of the gamma-turn (Leu-Pro-Met) of beta-lactoglobulin in vitamin D binding. FEBS Journal, 276, 2251–2265.

    Article  CAS  Google Scholar 

  5. Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: production and functionality. International Dairy Journal, 16, 945–960.

    Article  CAS  Google Scholar 

  6. Sawyer, L., & Kontopidis, G. (2000). The core lipocalin bovine β-lactoglobulin. Biochimica et Biophysica Acta, 1482, 136–148.

    Article  CAS  Google Scholar 

  7. Perez, M. D., Sanchaz, L., Aranda, P., Ena, J. M., Oria, R., & Calvo, M. (1992). Effect of beta-lactoglobulin on the activity of pregastic lipase a possible role for this protein in ruminant milk. Biochimica et Biophysica Acta, 1123, 151–155.

    Article  CAS  Google Scholar 

  8. Koistinen, H., Koistinen, R., Seppälä, M., Burova, T. V., Choiset, Y., & Haertlé, T. (1999). Glycodelin and β-lactoglobulin, lipocalins with a high structural similarity, differ in ligand binding properties. FEBS Letters, 450, 158–162.

    Article  CAS  Google Scholar 

  9. Mingqing, S., Sreemathy, R., Sumathi, R., Lisa, C. F., Ira, R. H., John, A. R., et al. (2001). Angiogenic role for glycodelin in tumorigenesis. PNAS, 98, 9265–9270.

    Article  Google Scholar 

  10. Dvorat, H. F. (2000). VPF/VEGF and the angiogenic response. Seminars in Perinatology, 29, 75–78.

    Article  Google Scholar 

  11. Denekampr, J. (1993). Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for Cancer therapy. British Journal Radiologists, 66, 181–196.

    Article  Google Scholar 

  12. Agarwal, C., Singh, R. P., Dhanalakshmi, S., & Agarwal, R. (2004). Anti-angiogenic efficacy of grape seed extract in endothelial cells. Oncology Reports, 11, 681–685.

    Google Scholar 

  13. Chen, J., Montanari, A. M., & Widmer, W. W. (1997). Two new polymethoxylated flavonoids, a class of compounds with potential anticancer activity, isolated from cold pressed Dancy tangerine peel oil solids. Journal of Agricultural and Food Chemistry, 45, 364–368.

    Article  CAS  Google Scholar 

  14. Zhang, Q., Tang, X., Lu, Q., Zhang, Z., Rao, J., & Le, A. D. (2006). Green tea extract and (−)-epigallocatechin-3-gallate inhibit hypoxia- and serum-induced HIF-1alpha protein accumulation and VEGF expression in human cervical carcinoma and hepatoma cells. Molecular Cancer Therapeutics, 5, 1227–1238.

    Article  CAS  Google Scholar 

  15. Khan, N., Farrukh, A., Mee-Hyang, K., KyungMann, K., & Hasan, M. (2007). Oral consumption of pomegranate fruit extract inhibits growth and progression of primary lung tumors in mice. Cancer Research, 67, 3475–3482.

    Article  CAS  Google Scholar 

  16. Miyazawa, T., Shibata, A., Nakagawa, K., & Tsuzuki, T. (2008). Anti-angiogenic function of tocotrienol. Asia Pacific Journal of Clinical Nutrition, 17, 253–256.

    CAS  Google Scholar 

  17. Shimamura, M., & Yamamoto, Y. (2004). Bovine lactoferrin inhibits tumor induced angiogenesis. International Journal of Cancer, 111, 111–116.

    Article  CAS  Google Scholar 

  18. Shao, Z. M., Shen, Z. Z., Liu, C. H., Sartippour, M. R., Go, V. L., Heber, D., et al. (2002). Curcumin exerts multiple suppressive effects on human breast carcinoma cells. International Journal of Cancer, 98, 234–240.

    Article  CAS  Google Scholar 

  19. Pierce, K. L., Premont, R. T., & Lefkowitz, R. J. (2002). Signalling: seven-transmembrane receptors. Nature Reviews Molecular Cell Biology, 3, 639–650.

    Article  CAS  Google Scholar 

  20. Kotresh, A. M. (2009). Structural features of the 5’-franking region of the β-lactoglobulin gene of buffalo (Bubalus bubalis). Buffalo Bulletin, 28, 34–39.

    Google Scholar 

  21. Aparna, H. S., & Salimath, P. V. (1999). Studies on the acidic glycoproteins of buffalo colostrum and their influence on the growth of Bifidobacterium bifidus. Nutrition Research, 19, 295–303.

    Article  CAS  Google Scholar 

  22. Hermodson, M., & Mahoney, W. C. (1983). Separation of peptides by reverse phase high performance liquid chromatography. Methods in Enzymology, 9, 352–359.

    Article  Google Scholar 

  23. Rosenfeld, J., Capdevielle, J., Guillemot, J. C., & Ferrara, P. (1992). In-gel digestion for internal sequence analysis after one-or two-dimensional gel electrophoresis. Analytical Biochemistry, 203, 173–179.

    Article  CAS  Google Scholar 

  24. Wu, S. L., Hühmer, A. F., Hao, Z., & Karger, B. L. (2007). On-line LC-MS approach combining collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced species for the trace-level characterization of proteins with post translational. Journal of Proteome Research, 6, 4230–4244.

    Article  CAS  Google Scholar 

  25. Versari, D., Lerman, L. O., & Lerman, A. (2007). The importance of reendotheialization after arterial injury. Current Pharmaceutical Design, 13, 1811–1824.

    Article  CAS  Google Scholar 

  26. Sheela, M. L., Ramakrishna, M. K., & Salimath, B. P. (2006). Angiogenic and proliferative effects of the cytokine VEGF in Ehrlich ascites tumor cells is inhibited by Glycyrrhiza glabra. International Immunopharmacology, 6, 494–498.

    Article  CAS  Google Scholar 

  27. Petra, W., Lechner, M., Merschak, P., & Redl, B. (2001). Molecular cloning of a novel lipocalin-1 interacting Human cell membrane receptor using phage display. Journal of Biological Chemistry, 276, 20206–20212.

    Article  Google Scholar 

  28. Rohit, A. C., & Aparna, H. S. (2011). Characterization of β-lactoglobulin from buffalo (Bubalus bubalis) colostrum and its possible interaction with erythrocyte lipocalins interacting membrane receptor. Journal of Biochemistry, 150, 279–288.

    Article  Google Scholar 

  29. William, J. S., & Wanda, P. (2009). Tolerance to water buffalo milk in a child with cow milk allergy. Annals of Allergy, Asthma & Immunology, 102, 349–350.

    Google Scholar 

  30. Rohit, A. C., Sathisha, K., & Aparna, H. S. (2012). A variant peptide of buffalo colostrum β-lactoglobulin inhibits angiotensin I converting enzyme activity. European Journal of Medicinal Chemistry, 53, 211–219.

    Article  CAS  Google Scholar 

  31. Bratt, T. (2000). Lipocalins and cancer. Biochim Biophys Acta, 1482, 318–326.

    Article  CAS  Google Scholar 

  32. Palupia, N. S., Franck, P., Guimont, C., Linden, G., Dumas, D., Stoltz, J., Nabet, P., Belleville-Nabet, F., & Dousset, B. (2000). Bovine β-lactoglobulin receptors on transformed mammalian cells (hybridomas MARK-3): characterization by flow cytometry. Journal of Biotechnology, 78, 171–184.

    Article  Google Scholar 

  33. Noeske-Jungblut, C., Haendler, B., Donner, P., Alagon, A., Possani, L., & Wolf-Dieter, S. (1995). A highly potent exosite inhibitor of thrombin. Journal of Biological Chemistry, 270, 28629–28634.

    Article  CAS  Google Scholar 

  34. Bratt, T., & Scott, G. K. (1995). Protein proteinase inhibitors as modulators of mammalian cell growth. Protein and Peptide Letters, 2, 391–402.

    CAS  Google Scholar 

  35. Van't Hof, W., Blankenvoorde, M. F., Veerman, E. C., & Amerongen, A. V. (1997). The salivary lipocalin von Ebner's gland protein is a cysteine proteinase inhibitor. Journal of Biological Chemistry, 272, 1837–1841.

    Article  Google Scholar 

  36. Flower, D. R. (1994). The lipocalin protein family: a role in cell regulation. FEBS Letters, 354, 7–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank University Grant Commission, New Delhi, India for sanction of grant (F31-294/2005-06) to undertake this investigation and Rohit A. Chougule thank ICMR for award of SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna H. Sosalegowda.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1471 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chougule, R.A., P., S., Salimath, B.P. et al. Buffalo Colostrum β-lactoglobulin Inhibits VEGF-Induced Angiogenesis by Interacting with G protein-Coupled Receptor Kinase. Appl Biochem Biotechnol 171, 366–381 (2013). https://doi.org/10.1007/s12010-013-0344-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0344-6

Keywords

Navigation