Skip to main content

Advertisement

Log in

Biohydrogen Production Based on the Evaluation of Kinetic Parameters of a Mixed Microbial Culture Using Glucose and Fruit–Vegetable Waste as Feedstocks

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Hydrogen (H2) production from the organic fraction of solid waste such as fruit and vegetable waste (FVW) is a novel and feasible energy technology. Continuous application of this process would allow for the simultaneous treatment of organic residues and energy production. In this study, batch experiments were conducted using glucose as substrate, and data of H2 production obtained were successfully adjusted by a logistic model. The kinetic parameters (μ max = 0.101 h−1, K s = 2.56 g/L) of an H2-producing microbial culture determined by the Monod and Haldane–Andrews growth models were used to establish the continuous culture conditions. This strategy led to a productive steady state in continuous culture. Once the steady state was reached in the continuous reactor, a maximum H2 production of 700 mL was attained. The feasibility of producing H2 from the FVW obtained from a local market in Mexico City was also evaluated using batch conditions. The effect of the initial FVW concentration on the H2 production and waste organic material degradation was determined. The highest H2 production rate (1.7 mmol/day), the highest cumulative H2 volume (310 mL), and 25 % chemical oxygen demand (COD) removal were obtained with an initial substrate (FVW) concentration of 37 g COD/L. The lowest H2 production rates were obtained with relatively low initial substrate concentrations of 5 and 11 g COD/L. The H2 production rates with FVW were also characterized by the logistic model. Similar cumulative H2 production was obtained when glucose and FVW were used as substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lin, C. N., Wu, S. Y., Lee, K. S., Lin, P. J., Lin, C. H., & Chang, J. S. (2007). Integration of fermentative hydrogen process and fuel cell for on-line electricity generation. International Journal of Hydrogen Energy, 32, 802–808.

    Article  CAS  Google Scholar 

  2. Levin, D. B., Pitt, L., & Love, M. (2004). Biohydrogen production: prospects and limitations to practical applications. International Journal of Hydrogen Energy, 29, 173–185.

    Article  CAS  Google Scholar 

  3. Ntaikou, I., Gavala, H. N., & Lyberatos, G. (2009). Modeling of fermentative hydrogen production from the bacterium Ruminococcus albus: definition of metabolism and kinetics during growth on glucose. International Journal of Hydrogen Energy, 34, 3697–3709.

    Article  CAS  Google Scholar 

  4. Logan, B. E., Oh, S. E., Kim, I., & Van Ginkel, S. (2002). Biological hydrogen production measured in batch anaerobic respirometers. Environmental Science & Technology, 36, 2530–2535.

    Article  CAS  Google Scholar 

  5. Fernandes, S. B., Peixoto, G., Albrecht, F. R., Saavedra del Aguila, N. K., & Zaiat, M. (2010). Potential to produce biohydrogen from various wastewaters. Energy for Sustainable Development, 14, 143–148.

    Article  CAS  Google Scholar 

  6. Van Ginkela, S. W., Oh, S. E., & Logan, B. E. (2005). Biohydrogen gas production from food processing and domestic wastewaters. International Journal of Hydrogen Energy, 30, 1535–1542.

    Article  Google Scholar 

  7. Vijayaraghavan, K., Ahmad, D., & Soning, C. (2007). Bio-hydrogen generation from mixed fruit peel waste using anaerobic contact filter. International Journal of Hydrogen Energy, 32, 4754–4760.

    Article  CAS  Google Scholar 

  8. Yang, P., Zhang, R., McGarveyc, J. A., & Benemann, J. R. (2007). Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. International Journal of Hydrogen Energy, 32, 4761–4771.

    Article  CAS  Google Scholar 

  9. Mohan, V. S., Mohanakrishna, G., Goud, R. K., & Sarma, P. N. (2009). Acidogenic fermentation of vegetable based market to harness biohydrogen with simultaneous stabilization. Bioresource Technology, 100, 3061–3068.

    Article  CAS  Google Scholar 

  10. Bouallagui, H., Lahdheb, H., BenRomdan, E., Rachdi, B., & Hamdi, M. (2009). Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. Journal of Environmental Management, 90, 1844–1849.

    Article  CAS  Google Scholar 

  11. Garcia-Peña, E. I., Parameswaran, P., Miceli, J., Canul Chan, M., & Krajmalnik, R. (2011). Anaerobic digestion process from vegetable and fruit residues; process and microbial ecology studies. Bioresource Technology, 102, 9447–9455.

    Article  Google Scholar 

  12. Lay, J. J., Lee, Y. J., & Noike, T. (1999). Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research, 33, 2579–2586.

    Article  CAS  Google Scholar 

  13. Wang, J., & Wan, W. (2009). Factors influencing fermentative hydrogen production: a review. International Journal of Hydrogen Energy, 32, 799–811.

    Article  Google Scholar 

  14. García-Peña, E. I., Ramirez, D., Guerrero-Barajas, C., & Arriaga-Hurtado, L. G. (2009). Semi-continuos biohydrogen production as an approach to generate electricity. Bioresource Technology, 100, 6369–6377.

    Article  Google Scholar 

  15. Ramos, C., Buitron, G., Moreno-Andrade, I., & Chamy, R. (2012). Effect of the initial total solids concentration and the initial pH on the bio-hydrogen production from cafeteria food waste. International Journal of Hydrogen Energy, 37, 1–8.

    Article  Google Scholar 

  16. Rittmann, B. E. (2008). Opportunities for renewable bioenergy using microorganisms. Biotechnology and Bioengineering, 100, 203–212.

    Article  CAS  Google Scholar 

  17. Gunaseelan, V. N. (2007). Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition. Bioresource Technology, 98, 1270–1277.

    Article  CAS  Google Scholar 

  18. Wolcott, R. D., Gontcharova, V., Sun, Y., & Dowd, S. E. (2009). Evaluation of the bacterial diversity among and within individual venous leg ulcers using bacterial tag-encoded FLX and Titanium amplicon pyrosequencing and metagenomic approaches. BMC Microbiology, 9, 226–232.

    Article  Google Scholar 

  19. Gontcharova, V. Y., Wolcott, R. D., Hollister, E. B., Gentry, T. J., & Dowd, S. E. (2010). Black Box Chimera Check (B2C2): a Windows-Based Software for Batch Depletion of Chimeras from Bacterial 16S rRNA Gene Datasets. Open Microbiology Journal, 4, 6–12.

    Google Scholar 

  20. Canul-Chan, M. (2010). Estudio de los parámetros de operación de un reactor anaerobio para la producción de hidrógeno a partir de residuos orgánicos. Master in Science Thesis, Instituto Politecnico Nacional, Mexico.

  21. Wong, Y. S., Kadir, M. O., & Teng, T. T. (2009). Biological kinetics evaluation of anaerobic stabilization pond treatment of palm oil effluent. Bioresource Technology, 100, 4969–4975.

    Google Scholar 

  22. Kim, S. H., Han, S. K., & Shin, H. S. (2008). Optimization of continuous hydrogen fermentation of food waste as a function of solid retention time independent of hydraulic retention time. Process Biochemistry, 43, 213–218.

    Article  CAS  Google Scholar 

  23. APHA American Public Health Association (1995). Standard Methods for the Examination of Water and Wastewater, 21th edn. Washington, DC, USA.

  24. Nath, K., & Das, D. (2011). Modeling and optimization of fermentative hydrogen production. Bioresource Technology, 102, 8569–8581.

    Article  CAS  Google Scholar 

  25. Nath, K., Kumar, A., & Das, D. (2006). Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11. Canadian Journal of Microbiology, 52, 525–532.

    Article  CAS  Google Scholar 

  26. Nath, K., Muthukumar, M., Kumar, A., & Das, D. (2008). Kinetics of two-stage fermentation process for the production of hydrogen. International Journal of Hydrogen Energy, 33, 1195–1203.

    Article  CAS  Google Scholar 

  27. JianLong, W., & Wei, W. (2008). The effect of substrate concentration on biohydrogen production by using kinetic models. Science in China Series B, Chemistry, 51, 1110–1117.

    Google Scholar 

  28. Lo, Y. C., Su, Y. C., Chen, C. Y., Chen, W. M., Lee, K. S., & Chang, J. S. (2009). Biohydrogen production from cellulosic hydrolysate produced via temperature-shift enhanced bacterial cellulose hydrolysis. Bioresource Technology, 100, 5802–5807.

    Google Scholar 

  29. Sharma, Y., & Li, B. (2009). Optimizing hydrogen production from organic wastewater treatment in batch reactors through experimental and kinetic analysis. International Journal of Hydrogen Energy, 34, 6171–6180.

    Article  CAS  Google Scholar 

  30. Ueno, Y., Haruta, S., Ishii, M., & Igarashi, Y. (2001). Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora. Journal of Bioscience and Bioengineering, 92, 397–400.

    CAS  Google Scholar 

  31. Fang, H. H. P., & Liu, H. (2002). Effect of pH on hydrogen production from glucose by mixed culture. Bioresource Technology, 82, 87–93.

    Article  CAS  Google Scholar 

  32. Chen, C. C., Lin, C. Y., & Chang, J. S. (2001). Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as limiting substrate. Applied Microbiology and Biotechnology, 57, 56–64.

    Article  CAS  Google Scholar 

  33. Chen, C. C., & Lin, C. Y. (2003). Using sucrose as a substrate in an anaerobic hydrogen producing reactor. Advances in Environmental Research, 7, 695–699.

    Article  CAS  Google Scholar 

  34. Chang, F. Y., & Lin, C. Y. (2004). Biohydrogen production using an up-flow anaerobic sludge blanket reactor. International Journal of Hydrogen Energy, 29, 33–39.

    Article  CAS  Google Scholar 

  35. Chen, C. C., & Lin, C. Y. (2000). Using sewage sludge as seed in an anaerobic hydrogen producing reactor. In Proceedings 25th Wastewater Treatment Technology Conference.

  36. Rao, M. S., & Singh, S. P. (2004). Bioenergy conversion studies of organic fraction of MSW: kinetic studies and gas yield-organic loading relationships for process optimization. Bioresource Technology, 95, 173–185.

    Article  CAS  Google Scholar 

  37. Dong, L., Zhenhong, Y., Yongming, S., Xiaoying, K., & Yu, Z. (2009). Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. International Journal of Hydrogen Energy, 34, 812–820.

    Article  Google Scholar 

  38. Fabiano, B., & Perego, P. (2002). Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. International Journal of Hydrogen Energy, 27, 149–156.

    Article  CAS  Google Scholar 

  39. Hawkes, F. R., Dinsdale, R., Hawkes, D. L., & Hussy, I. (2002). Sustainable fermentative hydrogen production: challenges for process optimization. International Journal of Hydrogen Energy, 27, 1339–1347.

    Article  CAS  Google Scholar 

  40. Lay, C. H., Kuo, S. Y., Sen, B., Chen, C. C., Chang, J. S., & Lin, C. Y. (2012). Fermentative biohydrogen production from starch-containing textile wastewater. International Journal of Hydrogen Energy, 37, 2050–2057.

    Article  CAS  Google Scholar 

  41. Jo, J. H., Lee, D. S., Park, D., Choe, W. S., & Park, J. M. (2008). Optimization of key process variables for enhanced hydrogen production by Enterobacter aerogenes using statistical methods. Bioresource Technology, 99, 2061–2066.

    Article  CAS  Google Scholar 

  42. Kapdan, I. K., & Kargi, F. (2006). Bio-hydrogen production from waste materials. Review. Enzyme and Microbial Technology, 38, 569–582.

    Article  CAS  Google Scholar 

  43. Kim, S. H., Han, S. K., & Shin, H. S. (2004). Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. International Journal of Hydrogen Energy, 29, 1607–1616.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported through funding provided by the Instituto Politécnico Nacional, grant SIP 20130393 and CONACYT grant 60976.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Garcia-Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Peña, E.I., Canul-Chan, M., Chairez, I. et al. Biohydrogen Production Based on the Evaluation of Kinetic Parameters of a Mixed Microbial Culture Using Glucose and Fruit–Vegetable Waste as Feedstocks. Appl Biochem Biotechnol 171, 279–293 (2013). https://doi.org/10.1007/s12010-013-0341-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0341-9

Keywords

Navigation