Skip to main content
Log in

Characterization of a d-Stereoselective Aminopeptidase (DamA) Exhibiting Aminolytic Activity and Halophilicity from Aspergillus oryzae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

β-Aminopeptidases exhibit both hydrolytic and aminolytic (peptide bond formation) activities and have only been reported in bacteria. We identified a gene encoding the β-aminopeptidase homolog from a genome database of the filamentous fungus Aspergillus oryzae. The gene was overexpressed in A. oryzae, and the resulting recombinant enzyme was purified. Apart from bacterial homologs [β-Ala-para-nitroanilide (pNA)], the enzyme preferred d-Leu-pNA and d-Phe-pNA as substrates. Therefore, we designated this gene as d-stereoselective aminopeptidase A (damA). The purified recombinant DamA was estimated to be a hexamer and was composed of two subunits with molecular masses of 29.5 and 11.5 kDa, respectively. Optimal hydrolytic activity of DamA toward d-Leu-pNA was observed at 50 °C and pH 8.0. The enzyme was stable up to 60 °C and from pH 4.0–11.0. DamA also exhibited aminolytic activity, producing d-Leu-d-Leu-NH2 from d-Leu-NH2 as a substrate. In the presence of 3.0 M NaCl, the amount of pNA liberated from d-Leu-pNA by DamA was 3.1-fold higher than that in the absence of NaCl. Thus, DamA is a halophilic enzyme. The enzyme was utilized to synthesize several hetero-dipeptides containing a d-amino acid at the N-terminus as well as physiologically active peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gill, I., López-Fandiño, R., Jorba, X., & Vulfson, E. N. (1996). Biologically active peptides and enzymatic approaches to their production. Enzyme and Microbial Technology, 18, 163–183.

    Article  CAS  Google Scholar 

  2. Kumar, D., & Bhalla, T. C. (2005). Microbial proteases in peptide synthesis: approaches and applications. Applied Microbiology and Biotechnology, 68, 726–736. Review.

    Article  CAS  Google Scholar 

  3. Montalbetti, C. A. G. N., & Falque, V. (2005). Amide bond formation and peptide coupling. Tetrahedron, 61, 10827–10852.

    Article  CAS  Google Scholar 

  4. Lombard, C., Saulnier, J., & Wallach, J. M. (2005). Recent trends in protease-catalyzed peptide synthesis. Protein and Peptide Letters, 12, 621–629. Review.

    Article  CAS  Google Scholar 

  5. Guzman, F., Barberis, S., & Illanes, A. (2007). Peptide synthesis: chemical or enzymatic. Electronic Journal of Biotechnology, 10, 279–314.

    Article  CAS  Google Scholar 

  6. Yagasaki, M., & Hashimoto, S. (2008). Synthesis and application of dipeptides; current status and perspectives. Applied Microbiology and Biotechnology, 81, 13–22. Review.

    Article  CAS  Google Scholar 

  7. Trusek-Holownia, A. (2003). Synthesis of ZAlaPheOMe, the precursor of bitter dipeptide in the two-phase ethyl acetate-water system catalysed by thermolysin. Journal of Biotechnology, 102, 153–163.

    Article  CAS  Google Scholar 

  8. Yokozeki, K., & Hara, S. (2005). A novel and efficient enzymatic method for the production of peptides from unprotected starting materials. Journal of Biotechnology, 115, 211–220.

    Article  CAS  Google Scholar 

  9. Arima, J., Uesugi, Y., Uraji, M., Iwabuchi, M., & Hatanaka, T. (2006). Dipeptide synthesis by aminopeptidase from Streptomyces septatus TH-2 and its application to synthesis of biologically active peptides. Applied and Environmental Microbiology, 72, 4225–4231.

    Article  CAS  Google Scholar 

  10. Arima, J., Morimoto, M., Usuki, H., Mori, N., & Hatanaka, T. (2010). Beta-alanyl peptide synthesis by Streptomyces S9 aminopeptidase. Journal of Biotechnology, 147, 52–58.

    Article  CAS  Google Scholar 

  11. Arima, J., Chiba, M., Ichiyanagi, T., Yabuta, Y., Mori, N., & Aimi, T. (2010). Eryngase: a Pleurotus eryngii aminopeptidase exhibiting peptide bond formation activity. Applied Microbiology and Biotechnology, 87, 1791–1801.

    Article  CAS  Google Scholar 

  12. Hatanaka, T., Yamasato, A., Arima, J., Usuki, H., Yamamoto, Y., & Kumagai, Y. (2011). Extracellular production and characterization of Streptomyces X-prolyl dipeptidyl aminopeptidase. Applied Biochemistry and Biotechnology, 164, 475–486.

    Article  CAS  Google Scholar 

  13. Arima, J., Ito, H., Hatanaka, T., & Mori, N. (2011). Aminolytic reaction catalyzed by d-stereospecific amidohydrolases from Streptomyces spp. Biochimie, 93, 1460–1469.

    Article  CAS  Google Scholar 

  14. Usuki, H., Yamamoto, Y., Arima, J., Iwabuchi, M., Miyoshi, S., Nitoda, T., et al. (2011). Peptide bond formation by aminolysin-A catalysis: a simple approach to enzymatic synthesis of diverse short oligopeptides and biologically active puromycins. Organic & Biomolecular Chemistry, 9, 2327–2335.

    Article  CAS  Google Scholar 

  15. Machida, M., Asai, K., Sano, M., Tanaka, T., Kumagai, T., Terai, G., et al. (2005). Genome sequencing and analysis of Aspergillus oryzae. Nature, 438, 1157–1161.

    Article  Google Scholar 

  16. Vongsangnak, W., Olsen, P., Hansen, K., Krogsgaard, S., & Nielsen, J. (2008). Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae. BMC Genomics, 9, 245.

    Article  Google Scholar 

  17. Kobayashi, T., Abe, K., Asai, K., Gomi, K., Juvvadi, P. R., Kato, M., et al. (2007). Genomics of Aspergillus oryzae. Bioscience, Biotechnology, and Biochemistry, 71, 646–670. Review.

    Article  CAS  Google Scholar 

  18. Kusumoto, K. I., Matsushita-Morita, M., Furukawa, I., Suzuki, S., Yamagata, Y., Koide, Y., et al. (2008). Efficient production and partial characterization of aspartyl aminopeptidase from Aspergillus oryzae. Journal of Applied Microbiology, 105, 1711–1719.

    Article  CAS  Google Scholar 

  19. Matsushita-Morita, M., Furukawa, I., Suzuki, S., Yamagata, Y., Koide, Y., Ishida, H., et al. (2010). Characterization of recombinant prolyl aminopeptidase from Aspergillus oryzae. Journal of Applied Microbiology, 109, 156–165.

    CAS  Google Scholar 

  20. Matsushita-Morita, M., Tada, S., Suzuki, S., Hattori, R., Marui, J., Furukawa, I., et al. (2010). Overexpression and characterization of an extracellular leucine aminopeptidase from Aspergillus oryzae. Current Microbiology, 62, 557–564.

    Article  Google Scholar 

  21. Marui, J., Matsushita-Morita, M., Tada, S., Hattori, R., Suzuki, S., Amano, H., Ishida, H., Yamagata, Y., Takeuchi, M., & Kusumoto, K. (2012). Enzymatic properties of the glycine-d-alanine aminopeptidase of Aspergillus oryzae and its activity profiles in liquid-cultured mycelia and solid-state rice culture (rice koji). Applied Microbiology and Biotechnology, 93, 655–669. erratum 901.

    Article  CAS  Google Scholar 

  22. Marui, J., Matsushita-Morita, M., Tada, S., Hattori, R., Suzuki, S., Amano, H., et al. (2012). Comparison of expression and enzymatic properties of Aspergillus oryzae lysine aminopeptidases ApsA and ApsB. World Journal of Microbiology and Biotechnology, 28, 2643–2650.

    Article  CAS  Google Scholar 

  23. Rawlings, N. D., Barrett, A. J., & Bateman, A. (2012). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 40, D343–D350.

    Article  CAS  Google Scholar 

  24. Heck, T., Geueke, B., & Kohler, H. P. (2012). Bacterial β-aminopeptidases: structural insights and applications for biocatalysis. Chemistry & Biodiversity, 9, 2388–2409.

    Article  CAS  Google Scholar 

  25. Geueke, B., Namoto, K., Seebach, D., & Kohler, H. P. (2005). A novel beta-peptidyl aminopeptidase (BapA) from strain 3-2W4 cleaves peptide bonds of synthetic beta-tri- and beta-dipeptides. Journal of Bacteriology, 187, 5910–5917.

    Article  CAS  Google Scholar 

  26. Geueke, B., Heck, T., Limbach, M., Nesatyy, V., Seebach, D., & Kohler, H. P. (2006). Bacterial beta-peptidyl aminopeptidases with unique substrate specificities for beta-oligopeptides and mixed beta, alpha-oligopeptides. FEBS Journal, 273, 5261–5272.

    Article  CAS  Google Scholar 

  27. Geueke, B., & Kohler, H. P. (2007). Bacterial beta-peptidyl aminopeptidases: on the hydrolytic degradation of beta-peptides. Applied Microbiology and Biotechnolog, 74, 1197–1204.

    Article  CAS  Google Scholar 

  28. Heck, T., Kohler, H. P., Limbach, M., Flögel, O., Seebach, D., & Geueke, B. (2007). Enzyme-catalyzed formation of beta-peptides: beta-peptidyl aminopeptidases BapA and DmpA acting as beta-peptide-synthesizing enzymes. Chemistry & Biodiversity, 4, 2016–2030.

    Article  CAS  Google Scholar 

  29. Heck, T., Reimer, A., Seebach, D., Gardiner, J., Deniau, G., Lukaszuk, A., et al. (2010). Beta-aminopeptidase-catalyzed biotransformations of beta(2)-dipeptides: kinetic resolution and enzymatic coupling. Chembiochem, 11, 1129–1136.

    Article  CAS  Google Scholar 

  30. Heyland, J., Antweiler, N., Lutz, J., Heck, T., Geueke, B., Kohler, H. P., et al. (2010). Simple enzymatic procedure for l-carnosine synthesis: whole-cell biocatalysis and efficient biocatalyst recycling. Microbial Biotechnology, 3, 74–83.

    Article  CAS  Google Scholar 

  31. Quinn, P., Boldyrev, A., & Formazuyk, V. (1992). Carnosine: its properties, functions and potential therapeutic applications. Molecular Aspects of Medicine, 13, 379–444.

    Article  CAS  Google Scholar 

  32. Hanahan, D. (1983). Studies on the transformation of Escherichia coli with plasmids. Journal of Molecular Biology, 166, 557–580.

    Article  CAS  Google Scholar 

  33. Gomi, K., Iimura, Y., & Hara, S. (1987). Integrative transformation of Aspergillus oryzae with a plasmid containing the Aspergillus nidulans argB gene. Agricultural and Biological Chemistry, 51, 2549–2555.

    Article  CAS  Google Scholar 

  34. Bradford, M. M. (1976). A rapid and sensitive method for detecting microgram amounts of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  35. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  36. Exterkate, F. A. (1984). Location of peptidases outside and inside the membrane of Streptococcus cremoris. Applied and Environmental Microbiology, 47, 177–183.

    CAS  Google Scholar 

  37. Fanuel, L., Thamm, I., Kostanjevecki, V., Samyn, B., Joris, B., Goffin, C., et al. (1999). Two new aminopeptidases from Ochrobactrum anthropi active on d-alanyl-p-nitroanilide. Cellular and Molecular Life Sciences, 55, 812–818.

    Article  CAS  Google Scholar 

  38. Fanuel, L., Goffin, C., Cheggour, A., Devreese, B., Van Driessche, G., Joris, B., et al. (1999). The DmpA aminopeptidase from Ochrobactrum anthropi LMG7991 is the prototype of a new terminal nucleophile hydrolase family. Biochemical Journal, 341, 147–155.

    Article  CAS  Google Scholar 

  39. Komeda, H., & Asano, Y. (2005). A DmpA-homologous protein from Pseudomonas sp. is a dipeptidase specific for beta-alanyl dipeptides. FEBS Journal, 272, 3075–3084.

    Article  CAS  Google Scholar 

  40. Fuchs, V., Jaeger, K.-E., Wilhelm, S., & Rosenau, F. (2011). The BapF protein from Pseudomonas aeruginosa is a β-peptidyl aminopeptidase. World Journal of Microbiology and Biotechnology, 27, 713–718.

    Article  CAS  Google Scholar 

  41. Bompard-Gilles, C., Villeret, V., Davies, G. J., Fanuel, L., Joris, B., Frère, J. M., et al. (2000). A new variant of the Ntn hydrolase fold revealed by the crystal structure of l-aminopeptidase d-ala-esterase/amidase from Ochrobactrum anthropi. Structure, 8, 153–162.

    Article  CAS  Google Scholar 

  42. Miyoshi, S., Ishikawa, H., Kaneko, T., Fukui, F., Tanaka, H., & Maruyama, S. (1991). Structures and activity of angiotensin-converting enzyme inhibitors in an alpha-zein hydrolysate. Agricultural and Biological Chemistry, 55, 1313–1318.

    Article  CAS  Google Scholar 

  43. Kwon, O. S., Park, S. H., Yun, B. S., Pyun, Y. R., & Kim, C. J. (2001). Cyclo(d-Pro-l-Val), a specific beta-glucosidase inhibitor produced by Aspergillus sp. F70609. Journal of Antibiotics, 54, 179–181.

    Article  CAS  Google Scholar 

  44. Briza, P., Ellinger, A., Winkler, G., & Breitenbach, M. (1990). Characterization of a DL-dityrosine-containing macromolecule from yeast ascospore walls. Journal of Biological Chemistry, 265, 15118–15123.

    CAS  Google Scholar 

  45. Kim, K. W., Sugawara, F., Yoshida, S., Murofushi, N., Takahashi, N., & Curtis, R. W. (1993). Structure of malformin B, a phytotoxic metabolite produced by Aspergillus niger. Bioscience, Biotechnology, and Biochemistry, 57, 787–791.

    Article  CAS  Google Scholar 

  46. Bompard-Gilles, C., Villeret, V., Fanuel, L., Joris, B., Frère, J. M., & Van Beeumen, J. (1999). Crystallization and preliminary X-ray analysis of a new l-aminopeptidase-d-amidase/d-esterase activated by a Gly-Ser peptide bond hydrolysis. Acta Crystallographica Section D: Biological Crystallography, 55, 699–701.

    Article  CAS  Google Scholar 

  47. Merz, T., Heck, T., Geueke, B., Mittl, P. R., Briand, C., Seebach, D., et al. (2012). Autoproteolytic and catalytic mechanisms for the beta-aminopeptidase BapA - a member of the Ntn hydrolase family. Structure, 20, 1850–1860.

    Article  CAS  Google Scholar 

  48. Uraji, M., Arima, J., Uesugi, Y., Iwabuchi, M., & Hatanaka, T. (2007). Effect of salt on the activity of Streptomyces prolyl aminopeptidase. Biochimica et Biophysica Acta, 1774, 1462–1469.

    Article  CAS  Google Scholar 

  49. Bock, M. G., & Longmore, J. (2000). Bradykinin antagonists: new opportunities. Current Opinion in Chemical Biology, 4, 401–406.

    Article  CAS  Google Scholar 

  50. Cucchi, P., Meini, S., Quartara, L., Giolitti, A., Zappitelli, S., Rotondaro, L., et al. (2002). Interaction of linear and cyclic peptide antagonists at the human B(2) kinin receptor. Peptides, 23, 1457–1463.

    Article  CAS  Google Scholar 

  51. Takagi, H., Shiomi, H., Ueda, H., & Amano, H. (1979). Morphine-like analgesia by a new dipeptide, l-tyrosyl-l-arginine (Kyotorphin) and its analogue. European Journal of Pharmacology, 55, 109–111.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partly supported by the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-Ichi Kusumoto.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsushita-Morita, M., Nakagawa, H., Tada, S. et al. Characterization of a d-Stereoselective Aminopeptidase (DamA) Exhibiting Aminolytic Activity and Halophilicity from Aspergillus oryzae . Appl Biochem Biotechnol 171, 145–164 (2013). https://doi.org/10.1007/s12010-013-0330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0330-z

Keywords

Navigation