Skip to main content
Log in

Protease Inhibitor from Insect Silk-Activities of Derivatives Expressed In Vitro and in Transgenic Potato

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Several recombinant derivatives of serine protease inhibitor called silk protease inhibitor 2 (SPI2), which is a silk component in Galleria mellonella (Lepidoptera, Insecta), were prepared in the expression vector Pichia pastoris. Both the native and the recombinant protease inhibitors were highly active against subtilisin and proteinase K. The synthetic SPI2 gene with Ala codon in the P1 position was fused with mGFP-5 to facilitate detection of the transgene and its protein product. A construct of the fusion gene with plant regulatory elements (promoter 35S and terminator OCS) was inserted into the binary vector pRD400. The final construct was introduced into Agrobacterium tumefaciens that was then used for genetic transformation of the potato variety Velox. The transgene expression was monitored with the aid of ELISA employing polyclonal antibody against natural SPI2. In vitro tests showed increased resistance to the late blight Phytophthora infestans in several transformed lines. No effect was seen on the growth, mortality, life span or reproduction of Spodoptera littoralis (Lepidoptera, Insecta) caterpillars, while feeding on transformed potato plants expressing the fusion protein, indicating that the transformed potatoes may be harmless to non-target organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barrett, A. J., & Salvesen, G. (1986). Proteinase inhibitors. Amsterdam: Elsevier.

    Google Scholar 

  2. Kurioka, A., Yamazaki, M., & Hirano, H. (1999). European Journal of Biochemistry, 259, 120–126.

    Article  CAS  Google Scholar 

  3. Sehnal, F., & Akai, H. (1998). International Journal of Insect Morphology and Embryology, 19, 79–132.

    Article  Google Scholar 

  4. Žurovec, M., Yang, C., Kodrík, D., & Sehnal, F. (1998). Journal of Biological Chemistry, 273, 15423–15428.

    Article  Google Scholar 

  5. Nirmala, X., Kodrík, D., Žurovec, M., & Sehnal, F. (2001). European Journal of Biochemistry, 268, 2064–2073.

    Article  CAS  Google Scholar 

  6. Nirmala, X., Mita, K., Vanisree, V., Žurovec, M., & Sehnal, F. (2001). Insect Molecular Biology, 10, 437–445.

    Article  CAS  Google Scholar 

  7. Hněvsová, V., Kodrík, D., & Weyda, F. (2011). European Journal of Entomology, 108, 711–715.

    Google Scholar 

  8. Kludkiewicz, B., Kodrík, D., Grzelak, K., Xavier, N., & Sehnal, F. (2005). Protein Expression and Purification, 43, 94–102.

    Article  CAS  Google Scholar 

  9. Gvozdeva, E. L., Ievleva, E. V., Gerasimova, N. G., Ozeretskovskaya, O. L., & Valueva, T. A. (2004). Applied Biochemistry and Microbiology, 40, 165–169.

    Article  CAS  Google Scholar 

  10. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  11. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  12. Wedde, M., Weise, C. H., Kopáček, P., Franke, P., & Vilcinskas, A. (1998). European Journal of Biochemistry, 255, 535–543.

    Article  CAS  Google Scholar 

  13. Chou, J., & Chou, T. C. (1987). Dose-effect analysis with microcomputers. Cambridge: Biosoft.

    Google Scholar 

  14. Ortego, F., Novillo, C., & Castanera, P. (1996). Archives of Insect Biochemistry and Physiology, 32, 163–180.

    Article  Google Scholar 

  15. Houseman, J. G., & Downe, E. R. (1982). Insect Biochemistry, 12, 651–655.

    Article  CAS  Google Scholar 

  16. Novillo, C., Castanera, P., & Ortego, F. (1997). Archives of Insect Biochemistry and Physiology, 36, 181–201.

    Article  CAS  Google Scholar 

  17. Christeller, J. T., Laing, W. A., Shaw, B. D., & Burgess, E. P. J. (1990). Insect Biochemistry, 20, 157–164.

    Article  CAS  Google Scholar 

  18. Lee, K. Y., Valaitis, A. P., & Denlinger, D. L. (1998). Archives of Insect Biochemistry and Physiology, 37, 97–205.

    Google Scholar 

  19. Haseloff, J., Siemering, K. R., Prasher, D. C., & Hodge, S. (1997). Proceedings of National Academy of Sciences of the USA, 94, 2122–2127.

    Article  CAS  Google Scholar 

  20. Datla, R. S. S., Hammerlindl, J. K., Panchuk, B., Pelcher, L. E., & Keller, W. (1992). Gene, 122, 383–384.

    Article  CAS  Google Scholar 

  21. Dietze, J., Blau, A., & Willmitzer, L. (1995). In I. Potrykus & G. Spangenber (Eds.), Gene transfer to plants (pp. 24–29). Berlin: Springer.

    Chapter  Google Scholar 

  22. Stoscheck, C. M. (1990). In M. P. Deutscher (Ed.), Methods in enzymology (Vol. 182, pp. 50–68). London: Academic Press.

    Google Scholar 

  23. Horáčková, V., Domkářová, J., & Kreuz, L. (2007). Scientific works. Potato Research Institute Havlíčkův Brod, 15, 101–109.

    Google Scholar 

  24. Vrbová, M., Horáček, J., Seidenglanz, M., Smýkalová, I., Sehnal, F., Navrátil, O., & Griga, M. (2010). In Vitro Cellular & Development Biology–Animal, 46, 118.

    Google Scholar 

  25. Hartl, M., Giri, A. P., Kaur, H., & Baldwin, I. T. (2010). The Plant Cell, 22, 4158–4175.

    Article  CAS  Google Scholar 

  26. Brown, E. S., & Dewhurst, C. F. (1975). Bulletin of Entomological Research, 65, 221–226.

    Article  Google Scholar 

  27. Jongsma, M. A., Bakker, P. L., Peters, J., Bosch, D., & Stiekema, W. J. (1995). Proceedings of National Academy of Sciences of the USA, 92, 8041–8045.

    Article  CAS  Google Scholar 

  28. Brioschi, D., Nadalini, L. D., Bengtson, M. H., Sogayar, M. C., Moura, D. S., & Silva-Filho, M. C. (2007). Insect Biochemistry and Molecular Biology, 37, 1283–1290.

    Article  CAS  Google Scholar 

  29. Martins, T., Oliveira, L., & Garcia, P. (2005). Biocontrol, 50, 761–770.

    Article  Google Scholar 

  30. Broadway, R. M. (1997). Journal of Insect Physiology, 43, 855–874.

    Article  CAS  Google Scholar 

  31. Hilder, V. A., & Boulter, D. (1999). Crop Protection, 18, 177–191.

    Article  Google Scholar 

  32. Gatehouse, J. A., Gatehouse, A. M. R., & Bown, D. P. (2000). In D. Michaud (Ed.), Recombinant protease inhibitors in plants (pp. 9–26). Georgetown: Landes Bioscience Eurekan Com.

    Google Scholar 

  33. Dunse, K. M., Stevens, J. A., Lay, F. T., Gaspar, Y. M., Heath, R. L., & Anderson, M. A. (2010). Proceedings of National Academy of Sciences of the USA, 107, 15011–15015.

    Article  CAS  Google Scholar 

  34. Navrátil, O., Kodrík, D., Kludkiewicz, B., Vinokurov, K. S., Sehnal, F., & Horáčková, V. (2012). In J. Romeis, M. Meissle, & F. Álvarez-Alfageme (Eds.), GMOs in Integrated Plant Production, IOBC wprs Bulletin, 73 (pp. 61–67). Darmstadt, Germany.

Download references

Acknowledgments

This study was supported by project no. QI91A229 from the Ministry of Agriculture of the Czech Republic. The authors thank Misses J. Zralá and R. Tanzer Fabiánová for their technical assistance, and Mr. Richard Klee (University of South Bohemia) for the English corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalibor Kodrík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kodrík, D., Kludkiewicz, B., Navrátil, O. et al. Protease Inhibitor from Insect Silk-Activities of Derivatives Expressed In Vitro and in Transgenic Potato. Appl Biochem Biotechnol 171, 209–224 (2013). https://doi.org/10.1007/s12010-013-0325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0325-9

Keywords

Navigation