Skip to main content
Log in

Fermentation of Biologically Pretreated Wheat Straw for Ethanol Production: Comparison of Fermentative Microorganisms and Process Configurations

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The pretreatment of lignocellulosic biomass with white-rot fungi to produce bioethanol is an environmentally friendly alternative to the commonly used physico-chemical processes. After biological pretreatment, a solid substrate composed of cellulose, hemicellulose and lignin, the two latter with a composition lower than that of the initial substrate, is obtained. In this study, six microorganisms and four process configurations were utilised to ferment a hydrolysate obtained from wheat straw pretreated with the white-rot fungus Irpex lacteus. To enhance total sugars utilisation, five of these microorganisms are able to metabolise, in addition to glucose, most of the pentoses obtained after the hydrolysis of wheat straw by the application of a mixture of hemicellulolytic and cellulolytic enzymes. The highest overall ethanol yield was obtained with the yeast Pachysolen tannophilus. Its application in combination with the best process configuration yielded 163 mg ethanol per gram of raw wheat straw, which was between 23 and 35 % greater than the yields typically obtained with a conventional bioethanol process, in which wheat straw is pretreated using steam explosion and fermented with the yeast Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dias, A. A., Freitas, G. S., Marques, G. S. M., Sampaio, A., Fraga, I. S., Rodrigues, M. A. M., Evtuguin, D. V., & Bezerra, R. M. F. (2010). Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresource Technology, 101(15), 6045–6050.

    Article  CAS  Google Scholar 

  2. Dorado, J., Almendros, G., Camarero, S., Martínez, A. T., Vares, T., & Hatakka, A. (1999). Transformation of wheat straw in the course of solid-state fermentation by four ligninolytic basidiomycetes. Enzyme and Microbial Technology, 25, 605–612.

    Article  CAS  Google Scholar 

  3. Bak, J. S., Ko, J. K., Choi, I., Park, Y., Seo, J., & Kim, K. H. (2009). Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnology and Bioengineering, 104(3), 471–482.

    Article  CAS  Google Scholar 

  4. Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., & Tanaka, T. (2005). Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. Journal of Bioscience and Bioengineering, 100(6), 637–643.

    Article  CAS  Google Scholar 

  5. Salvachúa, D., Prieto, A., López-Abelairas, M., Lu-Chau, T., Martínez, A. T., & Martínez, M. J. (2011). Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresource Technology, 102(16), 7500–7506.

    Article  Google Scholar 

  6. Fu, N., Peiris, P., Markham, J., & Bavor, J. (2009). A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures. Enzyme and Microbial Technology, 45, 210–207.

    Article  CAS  Google Scholar 

  7. Romero, I., Sánchez, S., Moya, M., Castro, E., Ruiz, E., & Bravo, V. (2007). Fermentation of olive tree pruning acid-hydrolysates by Pachysolen tannophilus. Biochemical Engineering Journal, 36, 108–115.

    Article  CAS  Google Scholar 

  8. Agbogbo, F. K., & Wenger, K. S. (2007). Production of ethanol from corn stover hemicelluloses hydrolysate using Pichia stipitis. Journal of Industrial Microbiology and Biotechnology, 34, 723–727.

    Article  CAS  Google Scholar 

  9. Zhang, M., Shukla, P., Ayyachamy, M., Permaul, K., & Singh, S. (2010). Improved bioethanol production through simultaneous saccharification and fermentation of lignocellulosic agricultural wastes by Kluyveromyces marxianus 6556. World Journal of Microbiology and Biotechnology, 26, 1041–1046.

    Article  CAS  Google Scholar 

  10. Wan, C., & Yebo, L. (2010). Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresource Technology, 101, 6398–6403.

    Article  CAS  Google Scholar 

  11. Adney, B., Baker, J. (1996). Measurement of cellulase activities. In: U.S. Department of Energy (Ed.), Laboratory analytical procedure. Golden, CO: NREL.

  12. Ghose, T. K. (1987). Measurements of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  13. Bailey, M. J., Biely, P., & Poutanem, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23(3), 257–270.

    Article  CAS  Google Scholar 

  14. Pinphanichakarn, P., Tangsakul, T., Thongnumwon, T., Talawanich, Y., & Thamchaipenet, A. (2004). Purification and characterization of b-xylosidase from Streptomyces sp. CH7 and its gene sequence analysis. World Journal of Microbiology and Biotechnology, 20(7), 727–733.

    Article  CAS  Google Scholar 

  15. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  16. Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., Crocker D. (2007). Determination of structural carbohydrates and lignin in biomass. In: U.S. Department of Energy (Ed.), Laboratory analytical procedure. Golden, CO: NREL.

  17. Dowe N., McMillan J. (2001). Lignocellulosic biomass hydrolysis and fermentation. In: U.S. Department of Energy (Ed.), Laboratory analytical procedure. Golden, CO: NREL.

  18. López-Abelairas, M., Lú-Chau, T., & Lema, J. M. (2013). Enhanced saccharification of biologically pretreated wheat straw for ethanol production. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-012-0054-5.

    Google Scholar 

  19. Zhong, W., Yu, H., Song, L., & Zhang, X. (2011). Combined pretreatment with white-rot fungus and alkali at near room-temperature for improving saccharification of corn stalks. Bioresource Technology, 6(3), 3440–3451.

    CAS  Google Scholar 

  20. Xu, C., Ma, F., & Zhang, X. (2009). Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover. Journal of Bioscience and Bioengineering, 108(5), 372–375.

    Article  CAS  Google Scholar 

  21. Sánchez, S., Bravo, V., Castro, E., Moya, A. J., & Camacho, F. (2002). The fermentation of mixtures of D-glucose and D-xylose by Candida shehatae, Pichia stipitis or Pachysolen tannophilus to produce ethanol. Journal of Chemical Technology and Biotechnology, 77, 641–648.

    Article  Google Scholar 

  22. Laplace, J. M., Delgenes, J. P., Moletta, R., & Navarro, J. M. (1993). Cofermentation of glucose and xylose to ethanol by a respiratory-deficient mutant of Saccharomyces cerevisiae co-cultivated with a xylose-fermenting yeast. Journal of Fermentation and Bioengineering, 75(3), 207–212.

    Article  CAS  Google Scholar 

  23. Agbogbo, F. K., Coward-Kelly, G., Torry-Smith, M., & Wenger, K. S. (2006). Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochemistry, 41, 2333–2336 (Oxford, UK).

    Article  CAS  Google Scholar 

  24. Wilkins, M. R., Mueller, M., Eichling, S., & Banat, I. M. (2008). Fermentation of xylose by the thermotolerant yeast strains Kluyveromyces marxianus IMB2, IMB4 and IMB5 under anaerobic conditions. Process Biochemistry, 43, 346–350.

    Article  CAS  Google Scholar 

  25. Rodrussamee, N., Lertwattanasakul, N., Hirata, K., Suprayogi, L. S., Kosaka, T., & Yamada, M. (2011). Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Applied Microbiology and Biotechnology, 90, 1573–1586.

    Article  CAS  Google Scholar 

  26. Xiros, C., & Christakopoulus, P. (2009). Enhanced ethanol production from brewer’s spent grain by a Fusarium oxysporum consolidated system. Biotechnology and Biofuels, 2, 4.

    Article  Google Scholar 

  27. Olsson, L., & Hahn-Hägerdal, B. (1996). Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme and Microbial Technology, 18, 312–331.

    Article  CAS  Google Scholar 

  28. Schneider, H., Wang, P. Y., Chan, Y. K., & Maleszka, R. (1981). Conversion of D-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnology Letters, 3, 89–92.

    Article  CAS  Google Scholar 

  29. Slininger, P. J., Bothast, R. J., Vancauwenberge, J. E., & Kurtzman, C. P. (1982). Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnology and Bioengineering, 24, 371–384.

    Article  CAS  Google Scholar 

  30. Zhao, L., Zhang, X., & Tan, T. (2008). Influence of various glucose/xylose mixtures on ethanol production by Pachysolen tannophilus. Biomass and Bioenergy, 32, 1156–1161.

    Article  CAS  Google Scholar 

  31. Öhgren, K., Bura, R., Lesnicki, G., Saddler, J., & Zacchi, G. (2007). A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochemistry, 42, 834–839.

    Article  Google Scholar 

  32. Kumar, R., & Wyman, C. E. (2009). Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnology Progress, 25, 302–314.

    Article  CAS  Google Scholar 

  33. De Vries, R. P., Kester, H. C., Poulsen, C. H., Benen, J. A., & Visser, J. (2000). Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydrate Research, 327, 401–410.

    Article  Google Scholar 

  34. López-Abelairas, M., Álvarez, P. M., Salvachúa, D., Lú-Chau, T., Martínez, M. J., & Lema, J. M. (2012). Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production. Bioprocess and Biosystems Engineering. doi:10.1007/s00449-012-0869-z.

    Google Scholar 

  35. Song, L., Ma, F., Zeng, Y., Zhang, X., & Hongbo, Y. (2012). The promoting effects of manganese on biological pretreatment with Irpex lacteus and enzymatic hydrolysis of corn stover. Bioresource Technology. doi:10.1016/j.biortech.2012.09.004.

    Google Scholar 

  36. Ballesteros, I., Negro, M. J., Oliva, J. M., Cabañas, A., & Manzanares, P. (2006). Ethanol production from steam-explosion pretreated wheat straw. Applied Biochemistry and Biotechnology, 129–132, 496–508.

    Article  Google Scholar 

  37. Linde, M., Jakobsson, E.-L., Galbe, M., & Zacchi, G. (2008). Steam pretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass and Bioenergy, 32, 326–332.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Biosos Project (CDTI, CEN-200910140) and by the Ministry of Economy and Competitiveness of Spain through the Local Investment Fund for Employment (Government of Spain) and was carried out in collaboration with Abengoa Bionergía Nuevas Tecnologías. The authors thank Novozymes for providing the commercial enzymes. T. Lu-Chau wishes to thank the I. Barreto program from the Galicia Government for financial support. The authors belong to the Galician Competitive Research Group GRC2010/37.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María López-Abelairas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(JPEG 125 kb)

High resolution image (EPS 13372 kb)

Fig. S2

(JPEG 149 kb)

High resolution image (EPS 13372 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Abelairas, M., Lu-Chau, T.A. & Lema, J.M. Fermentation of Biologically Pretreated Wheat Straw for Ethanol Production: Comparison of Fermentative Microorganisms and Process Configurations. Appl Biochem Biotechnol 170, 1838–1852 (2013). https://doi.org/10.1007/s12010-013-0318-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0318-8

Keywords

Navigation