Skip to main content
Log in

A New Metal-Chelated Cryogel for Reversible Immobilization of Urease

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) [poly(HEMA-GMA)] cryogel was synthesized by cryopolymerization technique at frozen temperature. Iminodiacetic acid (IDA) was then attached covalently to the cryogel as a chelating agent. Then, poly(HEMA-GMA)-IDA cryogel was chelated with Ni(II) ions and this novel metal affinity support was used for adsorption of urease from its aqueous solution. Urease adsorption experiments were carried out in a continuous system by using a peristaltic pump. Maximum urease adsorption onto poly(HEMA-GMA)-IDA-Ni(II) cryogel was found to be 11.30 mg/g cryogel at pH 5.0 acetate buffer and in 25 °C medium temperature. Urease adsorption capacity decreased with increasing ionic strength and increasing chromatographic flow rate. Adsorption kinetics of urease onto poly(HEMA-GMA)-IDA-Ni(II) cryogel was also investigated and it was found that Langmuir adsorption model is applicable for this adsorption study. This novel immobilized metal affinity chromatography support was used 10 times without any decrease at their adsorption capacity. It was also observed that urease enzyme was repeatedly adsorbed and desorbed without significant lost in enzymatic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ma, Z., & Ramakrishna, S. (2008). Journal of Membrane Science, 319, 23–28.

    Article  CAS  Google Scholar 

  2. Thömmes, K., & Kula, M. R. (1995). Biotechnology Progress, 11, 357–367.

    Article  Google Scholar 

  3. Tennikova, T. B., & Reusch, B. (2005). Journal of Chromatography. A, 1065, 13–17.

    Article  CAS  Google Scholar 

  4. Bereli, N., Andaç, M., Baydemir, G., Say, R., Galaev, I. Y., & Denizli, A. (2008). Journal of Chromatography. A, 1190, 18–26.

    Article  CAS  Google Scholar 

  5. Uzun, L., Say, R., & Denizli, A. (2005). Reactive and Functional Polymers, 64, 93–102.

    Article  CAS  Google Scholar 

  6. Lozinsky, V. I., Galaev, I. Y., Plieva, F. M., Savina, I. N., Jungvid, H., & Mattiasson, B. (2003). Trends in Biotechnology, 21, 445–451.

    Article  CAS  Google Scholar 

  7. Arvidsson, P., Plieva, F. M., Lozinsky, V. I., Galaev, I. Y., & Mattiasson, B. (2003). Journal of Chromatography. A, 986, 275–290.

    Article  CAS  Google Scholar 

  8. Lozinsky, V. I., Plieva, F. M., Galaev, I. Y., & Mattiasson, B. (2002). Bioseparation, 10, 163–188.

    Article  Google Scholar 

  9. Arvidsson, P., Plieva, F. M., Savina, I. N., Lozinsky, V. I., Fexby, S., Bülow, L., et al. (2002). Journal of Chromatography. A, 977, 27–38.

    Article  CAS  Google Scholar 

  10. Babac, C., Yavuz, H., Galaev, I. Y., Pişkin, E., & Denizli, A. (2006). Reactive and Functional Polymers, 66, 1263–1271.

    Article  CAS  Google Scholar 

  11. Dainiak, M. B., Galaev, I. Y., & Matiasson, B. (2006). Journal of Chromatography. A, 1123, 145–150.

    Article  CAS  Google Scholar 

  12. Hanora, A., Savina, I., Plieva, F. M., Izumrudov, V. A., Mattiasson, B., & Galaev, I. Y. (2006). Journal of Biotechnology, 123, 343–355.

    Article  CAS  Google Scholar 

  13. Demiryas, N., Tüzmen, N., Galaev, I. Y., Pişkin, E., & Denizli, A. (2007). Journal of Applied Polymer Science, 105, 1808–1816.

    Article  CAS  Google Scholar 

  14. Noppe, W., Plieva, F. M., Vanhoorelbeke, K., Deckmyn, H., Tuncel, M., Tuncel, A., et al. (2007). Journal of Biotechnology, 131, 293–299.

    Article  CAS  Google Scholar 

  15. Alkan, H., Bereli, N., Baysal, Z., & Denizli, A. (2009). Biochemical Engineering Journal, 45, 201–208.

    Article  CAS  Google Scholar 

  16. Tsai, S.-Y., Lin, S.-C., Suen, S.-Y., & Hsu, W.-H. (2006). Process Biochemistry, 41, 2058–2067.

    Article  CAS  Google Scholar 

  17. Porath, J., Carlsson, J., Olsson, I., & Belfrage, G. (1975). Nature, 258, 598–599.

    Article  CAS  Google Scholar 

  18. Gutierrez, R., Del Valle, E. M. M., & Galan, M. A. (2007). Biochemical Engineering Journal, 35, 264–272.

    Article  CAS  Google Scholar 

  19. Akgöl, S., Yalçınkaya, Y., Bayramoğlu, G., Denizli, A., & Arıca, M. Y. (2002). Process Biochemistry, 38, 675–683.

    Article  Google Scholar 

  20. Sahoo, B., Sahu, S. K., & Pramanik, P. (2011). Journal of Molecular Catalysis B: Enzymatic, 69, 95–102.

    Article  CAS  Google Scholar 

  21. Nabati, F., Habibi-Rezaei, M., Amanlou, M., & Moosavi-Movahedi, A. A. (2011). Journal of Molecular Catalysis B: Enzymatic, 70, 17–22.

    Article  CAS  Google Scholar 

  22. Chellapandian, M., & Krishnan, M. R. V. (1998). Process Biochemistry, 33, 595–600.

    Article  CAS  Google Scholar 

  23. Yılmaz, F., Bereli, N., Yavuz, H., & Denizli, D. (2009). Biochemical Engineering Journal, 43, 272–279.

    Article  Google Scholar 

  24. Zou, X., Liu, D., Zhong, L., & Yang, B. (2011). Analytical and Bioanalytical Chemistry, 401, 1251–1261.

    Article  CAS  Google Scholar 

  25. Odabaşı, M., Uzun, L., & Denizli, A. (2004). Journal of Applied Polymer Science, 93, 2501–2510.

    Article  Google Scholar 

  26. Luo, Q., Zou, H., Xiao, X., Guo, Z., Kong, L., & Mao, X. (2001). Journal of Chromatography. A, 926, 255–264.

    Article  CAS  Google Scholar 

  27. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  28. Berthelot, M. P. E. (1859). Repert De Chimica Applied, 1, 282–284.

    Google Scholar 

  29. Zhu, X., & Alexandratos, S. D. (2005). Industrial and Engineering Chemistry Research, 44, 8605–8610.

    Article  CAS  Google Scholar 

  30. Uygun, M., Uygun, D. A., Özçalışkan, E., Akgöl, S., & Denizli, A. (2012). Journal of Chromatography B, 887–888, 73–78.

    Article  Google Scholar 

  31. Rauf, M. A., Bukallah, S. B., Hamour, F. A., & Nasir, A. S. (2008). Chemical Engineering Journal, 137, 238–243.

    Article  CAS  Google Scholar 

  32. Uygun, D. A., Karagözler, A. A., Akgöl, S., & Denizli, A. (2009). Materials Science and Engineering: C, 29, 2165–2173.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Uygun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uygun, M., Akduman, B., Akgöl, S. et al. A New Metal-Chelated Cryogel for Reversible Immobilization of Urease. Appl Biochem Biotechnol 170, 1815–1826 (2013). https://doi.org/10.1007/s12010-013-0316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0316-x

Keywords

Navigation