Skip to main content
Log in

Efficient Production of Ethanol from Empty Palm Fruit Bunch Fibers by Fed-Batch Simultaneous Saccharification and Fermentation Using Saccharomyces cerevisiae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The concentration of ethanol produced from lignocellulosic biomass should be at least 40 g l−1 [about 5 % (v/v)] to minimize the cost of distillation process. In this study, the conditions for the simultaneous saccharification and fermentation (SSF) at fed-batch mode for the production of ethanol from alkali-pretreated empty palm fruit bunch fibers (EFB) were investigated. Optimal conditions for the production of ethanol were identified as temperature, 30 °C; enzyme loading, 15 filter paper unit g−1 biomass; and yeast (Saccharomyces cerevisiae) loading, 5 g l−1 of dry cell weight. Under these conditions, an economical ethanol concentration was achieved within 17 h, which further increased up to 62.5 g l−1 after 95 h with 70.6 % of the theoretical yield. To our knowledge, this is the first report to evaluate the economic ethanol production from alkali-pretreated EFB in fed-batch SSF using S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hasunuma, T., & Kondo, A. (2012). Process Biochemistry, 47, 1287–1294.

    Article  CAS  Google Scholar 

  2. Abdullah, M. A., Nazir, M. S., & Wahjoedi, B. A. (2011). International Process Chemistry Biology Environmental Engineering, 7, 32–35.

    Google Scholar 

  3. Tan, H. T., Lee, K. T., & Mohamed, A. R. (2010). Bioresource Technology, 10, 5719–5727.

    Article  Google Scholar 

  4. Hamzah, F., Idris, A., & Shuan, T. K. (2011). Biomass and Bioenergy, 35, 1055–1059.

    Article  CAS  Google Scholar 

  5. Han, M., Kim, Y., Kim, S. W., et al. (2011). Journal Chemistry Technology Biotechnology, 86, 1527–1534.

    Article  CAS  Google Scholar 

  6. Kang, H. W., Kim, Y., Kim, S. W., et al. (2012). Bioprocess and Biosystems Engineering, 35, 115–122.

    Article  CAS  Google Scholar 

  7. Krishna, S. H., & Chowdary, C. V. (2000). Journal Agriculture Food Chemistry, 48, 1971–1976.

    Article  CAS  Google Scholar 

  8. Pessani, N. K., Atiyeh, H. K., Wilkins, M. R., et al. (2011). Bioresource Technology, 102, 10618–10624.

    Article  CAS  Google Scholar 

  9. Li, H., Kim, N. J., Jiang, M., et al. (2009). Bioresource Technology, 100, 3245–3251.

    Article  CAS  Google Scholar 

  10. Sassner, P., Galbe, M., & Zacchi, G. (2006). Enz Microbial Tech, 39, 756–762.

    Article  CAS  Google Scholar 

  11. Tomas-Pejo, E., Olivam, J. M., Ballesteros, M., et al. (2008). Biotechnology Bioengineering, 100, 1122–1131.

    Article  CAS  Google Scholar 

  12. Gulati, M., Westgate, P. J., Brewer, M., et al. (2006). Applied Biochemistry Biotechnology, 57–58, 103–119.

    Google Scholar 

  13. Kaparaju, P., Serrano, M., Thomsen, A. B., et al. (2009). Bioresource Technology, 100, 2562–2568.

    Article  CAS  Google Scholar 

  14. Fitzpatrick, M., Champagne, P., Cunningham, M. F., et al. (2010). Bioresource Technology, 101, 8915–8922.

    Article  CAS  Google Scholar 

  15. Kim, S., Park, J. M., Seo, J. W., et al. (2012). Bioresource Technology, 109, 229–233.

    Article  CAS  Google Scholar 

  16. Cao, W., Sun, C., Liu, R., et al. (2012). Bioresource Technology, 111, 215–221.

    Article  CAS  Google Scholar 

  17. Jorgensen, H., Vibe-pedersen, J., Larsen, J., et al. (2007). Biotechnology Bioengineering, 96, 862–870.

    Article  Google Scholar 

  18. Ballesteros, M., Oliva, J. M., Manzanares, P., et al. (2002). World Journal Microbiology Biotechnology, 18, 559–561.

    Article  CAS  Google Scholar 

  19. Kim, B. S., Lee, S. C., Lee, S. Y., et al. (1994). Biotechnology Bioengineering, 43, 892–898.

    Article  CAS  Google Scholar 

  20. Narendranath, N., Thomas, K., & Ingledew, W. (2001). Journal of Industrial Microbiology and Biotechnology, 26, 171–177.

    Article  CAS  Google Scholar 

  21. Ohgren, K., Bura, R., Lesnicki, G., et al. (2007). Process Biochemistry, 42, 834–839.

    Article  Google Scholar 

  22. Saha, B. C., Nichols, N. N., & Cotta, M. A. (2011). Bioresource Technology, 102, 10892–10897.

    Article  CAS  Google Scholar 

  23. Watanabe, I., Miyata, N., Ando, A., et al. (2012). Bioresource Technology, 123, 695–698.

  24. Ko, J. K., Bak, J. S., Jung, M. W., et al.(2009). Bioresource Technology, 100, 4374–4380.

  25. Lau, M. W., & Dale, B. E. (2009). Proceedings of the National Academy of Sciences USA, 106, 1368–1373.

    Google Scholar 

  26. Lau, M. W., Gunawan, C., Balan, V., et al. (2010). Biotechnology for Biofuels, 3–11.

Download references

Acknowledgments

This work was supported by the New and Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation funded by the Korea government Ministry of Knowledge Economy and by the Joint Degree and Research Center funded by Korea Research Council of Fundamental Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chul Ho Kim.

Additional information

The authors Jang Min Park and Baek-Rock Oh are co-first authors and contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.M., Oh, BR., Seo, JW. et al. Efficient Production of Ethanol from Empty Palm Fruit Bunch Fibers by Fed-Batch Simultaneous Saccharification and Fermentation Using Saccharomyces cerevisiae . Appl Biochem Biotechnol 170, 1807–1814 (2013). https://doi.org/10.1007/s12010-013-0314-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0314-z

Keywords

Navigation