Skip to main content
Log in

Discarded Oranges and Brewer’s Spent Grains as Promoting Ingredients for Microbial Growth by Submerged and Solid State Fermentation of Agro-industrial Waste Mixtures

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The exploitation of various agro-industrial wastes for microbial cell mass production of Kluyveromyces marxianus, kefir, and Saccharomyces cerevisiae is reported in the present investigation. Specifically, the promotional effect of whole orange pulp on cell growth in mixtures consisting of cheese whey, molasses, and potato pulp in submerged fermentation processes was examined. A 2- to 3-fold increase of cell mass was observed in the presence of orange pulp. Likewise, the promotional effect of brewer’s spent grains on cell growth in solid state fermentation of mixtures of whey, molasses, potato pulp, malt spent rootlets, and orange pulp was examined. The cell mass was increased by 3-fold for K. marxianus and 2-fold for S. cerevisiae in the presence of these substrates, proving their suitability for single-cell protein production without the need for extra nutrients. Cell growth kinetics were also studied by measurements of cell counts at various time intervals at different concentrations of added orange pulp. The protein content of the fermented substrates was increased substantially, indicating potential use of mixed agro-industrial wastes of negligible cost, as protein-enriched livestock feed, achieving at the same time creation of added value and waste minimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tripodo, M. M., Lanuzza, F., Micali, G., Coppolino, R., & Nucita, F. (2004). Citrus waste recovery: a new environmentally friendly procedure to obtain animal feed. Bioresource Technology, 91(2), 111–115.

    Article  CAS  Google Scholar 

  2. Zilly, A., Bazanella, G. C., Helm, C. V., Araújo, C. A. V., De Souza, C. G. M., Bracht, A., et al. (2012). Solid-state bioconversion of passion fruit waste by white-rot fungi for production of oxidative and hydrolytic enzymes. Food Bioprocess Technology, 5, 1573–1580.

    Article  CAS  Google Scholar 

  3. Oberoi, H. S., Chavan, Y., Bansal, S., & Dhillon, G. S. (2010). Production of cellulases through solid state fermentation using kinnow pulp as a major substrate. Food Bioprocess Technology, 3, 528–536.

    Article  CAS  Google Scholar 

  4. Silvestre, M. P. C., Carreira, R. L., Silva, M. R., Corgosinho, F. C., Monteiro, M. R. P., & Morais, H. A. (2012). Effect of pH and temperature on the activity of enzymatic extracts from pineapple peel. Food Bioprocess Technology, 5, 1824–1831.

    Article  CAS  Google Scholar 

  5. Plessas, S., Bekatorou, A., Koutinas, A. A., Soupioni, M., Banat, I. M., & Marchant, R. (2007). Use of Saccharomyces cerevisiae cells immobilized on orange peel as biocatalyst for alcoholic fermentation. Bioresource Technology, 98, 860–865.

    Article  CAS  Google Scholar 

  6. Plessas, S., Koliopoulos, D., Kourkoutas, Y., Psarianos, C., Alexopoulos, A., Marchant, R., et al. (2008). Upgrading of discarded oranges through fermentation using kefir in food industry. Food Chemistry, 106, 40–49.

    Article  CAS  Google Scholar 

  7. Israelides, J. C., Smith, A., Scanlon, B., & Barnett, C. (2000). Pollulan from agroindustrial wastes. Biotechnology & Genetic Engineering Reviews, 16, 309–324.

    Article  Google Scholar 

  8. Sawalha, S. M. S., Arráez-Román, D., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2009). Quantification of main phenolic compounds in sweet and orange peel using CE-MS/MS. Food Chemistry, 116, 567–574.

    Article  CAS  Google Scholar 

  9. Santos, M., Jiménez, J. J., Bartolomé, B., Gómez-Cordovés, C., & Del Nozal, M. J. (2003). Variability of brewers’ spent grain within a brewery. Food Chemistry, 80, 17–21.

    Article  CAS  Google Scholar 

  10. Qing, L., & Huiyuan, Y. (2007). Antioxidant activities of barley seeds extracts. Food Chemistry, 102, 732–737.

    Article  Google Scholar 

  11. Kopsahelis, N., Agouridis, N., Bekatorou, A., & Kanellaki, M. (2007). Comparative study of delignified and non-delignified brewer’s spent grains as yeast immobilization supports for alcohol production from molasses. Bioresource Technology, 98(7), 1440–1447.

    Article  CAS  Google Scholar 

  12. Branyik, T., Vicente, A. A., Machado-Cruz, J. M., & Teixeira, J. A. (2001). Spent grains—a new support for brewing yeast immobilization. Biotechnology Letters, 23, 1073–1078.

    Article  CAS  Google Scholar 

  13. Mallouchos, A., Loukatos, P., Bekatorou, A., Koutinas, A. A., & Komaitis, M. (2007). Ambient and low temperature winemaking by immobilized cells on brewer’s spent grains: effect on volatile composition. Food Chemistry, 104, 918–927.

    Article  CAS  Google Scholar 

  14. Bekatorou, A., Bountas, Y., Banat, I. M., & Kanellaki, M. (2007). Upgrading brewer’s spent grains by treatment with Aspergillus species. Chemical Industry and Chemical Engineering Quarterly, 13, 72–78.

    Article  CAS  Google Scholar 

  15. Koutinas, A. A., Papapostolou, H., Dimitrellou, D., Kopsahelis, N., Katechaki, E., Bekatorou, A., et al. (2009). Whey valorisation: a complete and novel technology development for dairy industry starter culture production. Bioresource Technology, 100, 3734–3739.

    Article  CAS  Google Scholar 

  16. Nigam, P., & Vogel, M. (1991). Bioconversion of sugar industry by-products—molasses and sugar beet pulp for single cell protein production by yeasts. Biomass and Bioenergy, 1, 339–345.

    Article  CAS  Google Scholar 

  17. Gélinas, P., & Barrette, J. (2007). Protein enrichment of potato processing waste through yeast fermentation. Bioresource Technology, 98, 1138–1143.

    Article  Google Scholar 

  18. Bekatorou, A., Aggelopoulos, T., and Nigam, P. (2010). Applied biorefinary concept in the food industry and valorization of liquid and solid wastes: production of SCP and other compounds. 4th International Congress on Bioprocess in Food Industries-ICBF 2010 and X Southern Regional Meeting on Food Science and Technology-X ERSCTA, 5–8 October, CIETEP/FIEPR, Curitiba, Brazil.

  19. Argiriou, T., Kaliafas, A., Psarianos, K., Kanellaki, M., Voliotis, S., & Koutinas, A. A. (1996). Psychrotolerant Saccharomyces cerevisiae strains after an adaptation treatment for low temperature wine making. Process Biochemistry, 31, 639–643.

    Article  CAS  Google Scholar 

  20. Kourkoutas, Y., Dimitropoulou, S., Kanellaki, M., Marchant, R., Nigam, P., Banat, I. M., et al. (2002). High-temperature alcoholic fermentation of whey using Kluyveromyces marxianus IMB3 yeast immobilized on delignified cellulosic material. Bioresource Technology, 82, 177–181.

    Article  CAS  Google Scholar 

  21. Gardeli, C., Papageorgiou, V., Mallouchos, A., Kibouris, T., & Komaitis, M. (2008). Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: evaluation of antioxidant capacity of methanolic extracts. Food Chemistry, 107, 1120–1130.

    Article  CAS  Google Scholar 

  22. Koutinas, A. A., Athanasiadis, I., Bekatorou, A., Psarianos, C., Kanellaki, M., Agouridis, N., et al. (2007). Kefir-yeast technology: industrial scale-up of alcoholic fermentation of whey, promoted by raisin extracts, using kefir-yeast granular biomass. Enzyme and Microbial Technology, 41, 576–582.

    Article  CAS  Google Scholar 

  23. Kourkoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R., & Koutinas, A. A. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology, 21, 377–397.

    Article  CAS  Google Scholar 

  24. Aliyu, S., & Bala, M. (2011). Brewer’s spent grain: a review of its potentials and applications. African Journal of Biotechnology, 10, 324–331.

    CAS  Google Scholar 

  25. Pourbafrani, M., Forgacs, G., Horvath, I. S., Niklasson, C., & Taherzadeh, M. J. (2010). Production of biofuels, limonene and pectin from citrus wastes. Bioresource Technology, 101, 4246–4250.

    Article  CAS  Google Scholar 

  26. Batt, C. A. (1999). Kluyveromyces. In R. K. Robinson & C. A. Batt (Eds.), Encyclopedia of food microbiology (pp. 1115–1118). London: Academic Press.

    Chapter  Google Scholar 

  27. Wang, Q., He, P., Lu, D., Shen, A., & Jiang, N. (2002). Screening of pyruvate-producing yeast and effect of nutritional conditions on pyruvate production. Letters in Applied Microbiology, 35, 338–342.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Research Committee of the University of Patras and the K. Karatheodori 2010 Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios A. Koutinas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aggelopoulos, T., Bekatorou, A., Pandey, A. et al. Discarded Oranges and Brewer’s Spent Grains as Promoting Ingredients for Microbial Growth by Submerged and Solid State Fermentation of Agro-industrial Waste Mixtures. Appl Biochem Biotechnol 170, 1885–1895 (2013). https://doi.org/10.1007/s12010-013-0313-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0313-0

Keywords

Navigation