Skip to main content
Log in

Development of an In Situ Detachment Protocol of Vero Cells Grown on Cytodex1 Microcarriers Under Animal Component-Free Conditions in Stirred Bioreactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Subcultivation of Vero cells grown in a proprietary animal component-free medium named IPT-AFM, on microcarriers, was studied. TrypLE Select, a non-animal-derived protease, was used as an alternative to trypsin for cell passaging. We first studied the effect of increasing concentrations of TrypLE Select toward cell growth and then studied the inactivation of the protease using either soybean trypsin inhibitor (STI) or the soy hydrolysate Hypep 1510, in six-well plates. Data showed that cell growth was impaired by residual level of TrypLE Select; STI was identified as an efficient agent to neutralize this effect. To restore cell growth and inactivate TrypLE Select, STI should be added to the medium at least at 0.2 g L−1. Cells were also grown in spinner flask on 2 g L−1 Cytodex1 in IPT-AFM. In these conditions, the cell detachment yield was equal to 78 ± 8 %. Furthermore, cells exhibited a typical growth profile when using the dislodged cells to seed a new culture. A cell detachment yield of 70 ± 19 % was also achieved when the cells were grown in a 2-L stirred bioreactor in IPT-AFM, on 3 g L−1 Cytodex1. This protocol can be of great interest to scale-up the process of Vero cells cultivation in IPT-AFM on Cytodex1 from one stirred bioreactor culture to another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Birch, J. R. (1999). Suspension culture of animal cells. In M. C. Flickinger & S. W. Drew (Eds.), Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation (pp. 2509–2516). New York: Wiley.

    Google Scholar 

  2. Shao, M., Lei, J., Wei, C., & Ouyang, F. (2002). Analysis of Vero cell growth behaviour on microcarriers by means of environmental scanning electron microscopy. Science in China (Series C), 45, 149–158.

    Article  Google Scholar 

  3. Montagnon, B. J., Fanger, B., & Nicolas, A. J. (1981). The large-scale cultivation of Vero cells in microcarrier culture for virus vaccine production: preliminary results for killed poliovirus vaccine. Development in Biological Standardization, 47, 55–64.

    CAS  Google Scholar 

  4. Van Wezel, A. L. (1967). Growth of cell strains and primary cells on microcarriers in homogeneous culture. Nature, 216, 64–65.

    Article  Google Scholar 

  5. Wang, Y., & Ouyang, F. (1999). Bead-to-bead transfer of Vero cells in microcarrier culture. Cytotechnology, 31, 221–224.

    Article  CAS  Google Scholar 

  6. Lindner, E., Arvidsson, A. C., Wergeland, I., & Billig, D. (1987). Subpassaging cells on microcarriers: the importance for scaling up to production. Development in Biological Standardization, 66, 299–305.

    CAS  Google Scholar 

  7. Merten, O. W. (2000). Cell detachment. In M. C. Flickinger, S. W. Drew, & R. E. Spier (Eds.), The encyclopedia of industrial biotechnology: bioprocess, bioseparation and cell technology. New York: Wiley.

    Google Scholar 

  8. Merten, O. W. (2002). Development of serum-free media for cell growth and production of viruses/viral vaccines—safety issues of animal products used in serum-free media. Development in Biological Standardization, 111, 233–257.

    CAS  Google Scholar 

  9. Schröder, M., & Friedl, P. (1997). A protein-free solution as replacement for serum in trypsinization protocols for anchorage-dependent cells. Methods in Cell Science, 19, 137–147.

    Article  Google Scholar 

  10. Lindskog, U., Lundgren, B., Billing, D., & Lindner, E. (1987). Alternatives for harvesting cells grown on microcarriers: effects on subsequent attachment and growth. Development in Biological Standardization, 66, 307–313.

    CAS  Google Scholar 

  11. Wiktor, T.J., Fanget, B.J., Montagnon, B.J. (1986). Process for the large scale production of rabies vaccine. US 4,664,912

  12. Aert, B.L., Ghislain, Y.J.M., Gonze, M.M.J, Knott, ISL., Magetto, C. (2006) Animal free cell culture method. US Patent 0183224

  13. Van Wezel, A. L., Van Der Velden-de Groot, C. A. T., & Van Herwaarden, J. A. (1980). The production of inactivated polio vaccine on serially cultivated kidney cells from captive-bred monkeys. Development in Biological Standardization, 46, 151–158.

    Google Scholar 

  14. Gebb, C., Lundgren, B., Clark, J., & Lindskog, U. (1984). Harvesting and subculturing cells growing on denatured-collagen coated microcarriers (Cytodex3). Development in Biological Standardization, 55, 57–65.

    Google Scholar 

  15. Billig, D., Clark, J. M., Ewell, A. J., Carte, C. M., et al. (1984). The separation of harvested cells from microcarriers: a comparison of methods. Development in Biological Standardization, 55, 67–75.

    Google Scholar 

  16. Reiter, M., Mundt, W., Grillberger, L., Kraus, B. (2004) Animal protein free media for cultivation of cells. WO Patent 005493A1.

  17. Durocher, Y., Pham, P. L., St-Laurent, G., Jacob, D., et al. (2007). Scalable serum-free production of recombinant adeno associated virus type 2 by transfection of 293 suspension cells. Journal of Virological Methods, 144, 32–40.

    Article  CAS  Google Scholar 

  18. Lenglois, S., Moser, M., & Miller, A. O. A. (2004). Microsupport with two-dimensional geometry (2D-MS). Cytotechnology, 44, 47–54.

    Article  CAS  Google Scholar 

  19. Cinatl, J., Jr., Cinatl, J., Rabenau, H., Rapp, J., et al. (1993). Protein-free culture of Vero cells: a substrate for replication of human pathogenic viruses. Cell Biology International, 17, 885–896.

    Article  CAS  Google Scholar 

  20. Cruz, H. J., Diaz, E. M., Moreira, J. L., & Carrondo, M. J. T. (1997). Cell dislodging methods under serum-free conditions. Applied Microbiology and Biotechnology, 47, 482–488.

    Article  CAS  Google Scholar 

  21. Rourou, S., Van der Ark, A., Van der Velden, T., & Kallel, H. (2009). Development of an animal-component free medium for Vero cells culture. Biotechnology Progress, 25, 1752–1761.

    CAS  Google Scholar 

  22. Junge, L., Ohl, C. D., Wolfrum, B., Arora, M., et al. (2003). Cell detachment method using shock-wave-induced cavitation. Ultrasound in Medicine and Biology, 29, 1769–1776.

    Article  CAS  Google Scholar 

  23. Brun-Graeppi, A. K. A. S., Richard, C., Bessodes, M., Scherman, D., et al. (2010). Thermoresponsive surfaces for cell culture and enzyme-free cell detachment. Progress in Polymer Science, 35, 1311–1324.

    Article  CAS  Google Scholar 

  24. Yang, H. S., Jeon, O., Bhang, S. H., Lee, S. H., et al. (2010). Suspension culture of mammalian cells using thermosensitive microcarrier that allows cell detachment without proteolytic enzyme treatment. Cell Transplantation, 19, 1123–1132.

    Article  Google Scholar 

  25. Brun-Graeppi, A. K., Richard, C., Bessodes, M., Scherman, D., et al. (2011). Cell microcarriers and microcapsules of stimuli-responsive polymers. Journal of Controlled Release, 149, 209–224.

    Article  CAS  Google Scholar 

  26. Yoshikatsu, A., Akihiko, K., Masayuki, Y., & Teruo, O. (2004). Ultrathin poly (N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir, 20, 5506–5511.

    Article  Google Scholar 

  27. Sun, X., & Zhang, Y. (2007). A cell-detaching reactor for inoculation of anchorage-dependent CHD and Vero cells between stepwise-expanded bioreactors. Biotechnology Letters, 29, 697–701.

    Article  CAS  Google Scholar 

  28. Luo, F., Sun, H., Geng, T., & Qi, N. (2008). Application of Taguchi’s method in the optimization of bridging efficiency between confluent and fresh microcarriers in bead-to-bead transfer of Vero cells. Biotechnology Letters, 30, 645–649.

    Article  CAS  Google Scholar 

  29. Rourou, S., Van der Ark, A., Van Der Velden, T., & Kallel, H. (2007). A microcarrier cell culture process for propagating rabies virus in Vero cells grown in a stirred bioreactor under fully animal component free conditions. Vaccine, 25, 3879–3889.

    Article  CAS  Google Scholar 

  30. Rourou, S., Van der Ark, A., Majoul, S., Trabelsi, K., et al. (2009). A novel animal-component-free medium for rabies virus production in Vero cells grown on Cytodex 1 microcarriers in a stirred bioreactor. Applied Microbiology and Biotechnology, 85, 53–63.

    Article  CAS  Google Scholar 

  31. Trabelsi, K., Rourou, S., Loukil, H., Majoul, S., et al. (2005). Comparison of various culture modes for the production of rabies virus by Vero cells grown on microcarriers in a 2-l bioreactor. Enzyme and Microbial Technology, 36, 517–519.

    Article  Google Scholar 

  32. Umegaki, R., Kino-Oka, M., & Taya, M. (2004). Assessment of cell detachment and growth potential of human keratinocyte based on observed changes in individual cell area during trypsinization. Biochemical Engineering Journal, 17, 49–55.

    Article  CAS  Google Scholar 

  33. Ozawa, K., & Laskowski, M. (1966). The reactive site of trypsin inhibitor. The Journal of Biological Chemistry, 241, 3955–3961.

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for Arno van der Ark and Tiny van der Velden from RIVM (Bilthoven, The Netherlands) for fruitful discussion. We also thank Sheffield-Bioscience for supplying the Hypeps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héla Kallel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rourou, S., Riahi, N., Majoul, S. et al. Development of an In Situ Detachment Protocol of Vero Cells Grown on Cytodex1 Microcarriers Under Animal Component-Free Conditions in Stirred Bioreactor. Appl Biochem Biotechnol 170, 1724–1737 (2013). https://doi.org/10.1007/s12010-013-0307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0307-y

Keywords

Navigation